25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recurrent Hepatitis in Two Iranian Children: A Novel (Q166R) Mutation in EIF2AK3 Leading to Wolcott-Rallison Syndrome

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early-onset diabetes, liver dysfunction, growth retardation, spondyloepiphyseal dysplasia, and tendency to skeletal fractures due to osteopenia are characteristics of Wolcott-Rallison syndrome (WRS). Eukaryotic translation initiation factor 2α kinase (EIF2AK3) is the only known gene, which is responsible for this rare autosomal recessive disorder. Here, we report two siblings a girl and a boy with diabetes mellitus (DM) who presented in one and two months of age respectively. Recurrent self-limiting hepatitis developed later, and severe hepatic failure resulted in death of the first child. The second child visited was a 7.75 year old boy who had spondyloepiphyseal dysplasia and subclinical hypothyroidism besides DM and recurrent hepatitis. We suggested WRS for this patient, and it was confirmed by identification of a novel homozygous missense mutation (Q166R) in exon 3 of the EIF2AK3 gene. The aim of this report is to remind the possibility of WRS in isolated neonatal diabetes; while, the other clinical manifestations of this syndrome including its major symptom of recurrent hepatitis may appear later.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Liver and diabetes. A vicious circle.

          The complex and bi-directional relationship linking the liver and diabetes has recently gained intense new interest. This critical review of the published work aims to highlight the most recent basic and clinical data underlying the development of type 2 diabetes, in those with non-alcoholic fatty liver disease. Moreover, the potentially detrimental effects of type 2 diabetes in liver injury are also discussed in each of the two sections of the present paper. Fatty liver and diabetes share insulin resistance as their chief pathogenic determinant. The roles of the hypothalamus, the intestinal microbiome, white adipose tissue and inflammation are discussed in detail. Molecular insights into hepatocyte insulin resistance as the initiator of systemic insulin resistance are also presented with full coverage of the danger of fatty acids. Lipotoxicity, apoptosis, lipoautophagy, endoplasmic reticular stress response and recent developments in genetics are discussed. Closing the circle, special emphasis is given to biochemical pathways and clinical evidence supporting the role of type 2 diabetes as a risk factor for the development of progressive liver disease, including non-alcoholic steatohepatitis, cirrhosis and primary liver cancer. In conclusion, data support non-alcoholic fatty liver disease as a risk factor for the development of type 2 diabetes which is, in turn, a major contributor to progressive liver disease. This pathway leading from fatty liver to type 2 diabetes and back from the latter to the progressive liver disease is a vicious circle. © 2012 The Japan Society of Hepatology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Wolcott-Rallison syndrome

            Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disease, characterized by neonatal/early-onset non-autoimmune insulin-requiring diabetes associated with skeletal dysplasia and growth retardation. Fewer than 60 cases have been described in the literature, although WRS is now recognised as the most frequent cause of neonatal/early-onset diabetes in patients with consanguineous parents. Typically, diabetes occurs before six months of age, and skeletal dysplasia is diagnosed within the first year or two of life. Other manifestations vary between patients in their nature and severity and include frequent episodes of acute liver failure, renal dysfunction, exocrine pancreas insufficiency, intellectual deficit, hypothyroidism, neutropenia and recurrent infections. Bone fractures may be frequent. WRS is caused by mutations in the gene encoding eukaryotic translation initiation factor 2α kinase 3 (EIF2AK3), also known as PKR-like endoplasmic reticulum kinase (PERK). PERK is an endoplasmic reticulum (ER) transmembrane protein, which plays a key role in translation control during the unfolded protein response. ER dysfunction is central to the disease processes. The disease variability appears to be independent of the nature of the EIF2AK3 mutations, with the possible exception of an older age at onset; other factors may include other genes, exposure to environmental factors and disease management. WRS should be suspected in any infant who presents with permanent neonatal diabetes associated with skeletal dysplasia and/or episodes of acute liver failure. Molecular genetic testing confirms the diagnosis. Early diagnosis is recommended, in order to ensure rapid intervention for episodes of hepatic failure, which is the most life threatening complication. WRS should be differentiated from other forms of neonatal/early-onset insulin-dependent diabetes based on clinical presentation and genetic testing. Genetic counselling and antenatal diagnosis is recommended for parents of a WRS patient with confirmed EIF2AK3 mutation. Close therapeutic monitoring of diabetes and treatment with an insulin pump are recommended because of the risk of acute episodes of hypoglycaemia and ketoacidosis. Interventions under general anaesthesia increase the risk of acute aggravation, because of the toxicity of anaesthetics, and should be avoided. Prognosis is poor and most patients die at a young age. Intervention strategies targeting ER dysfunction provide hope for future therapy and prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wolcott-Rallison Syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity.

              Wolcott-Rallison syndrome (WRS) is a rare autosomal-recessive disorder characterized by the association of permanent neonatal or early-infancy insulin-dependent diabetes, multiple epiphyseal dysplasia and growth retardation, and other variable multisystemic clinical manifestations. Based on genetic studies of two inbred families, we previously identified the gene responsible for this disorder as EIF2AK3, the pancreatic eukaryotic initiation factor 2alpha (eIF2alpha) kinase. Here, we have studied 12 families with WRS, totalling 18 cases. With the exception of one case, all patients carried EIF2AK3 mutations resulting in truncated or missense versions of the protein. Exclusion of EIF2AK3 mutations in the one patient case was confirmed by both linkage and sequence data. The activities of missense versions of EIF2AK3 were characterized in vivo and in vitro and found to have a complete lack of activity in four mutant proteins and residual kinase activity in one. Remarkably, the onset of diabetes was relatively late (30 months) in the patient expressing the partially defective EIF2AK3 mutant and in the patient with no EIF2AK3 involvement (18 months) compared with other patients (<6 months). The patient with no EIF2AK3 involvement did not have any of the other variable clinical manifestations associated with WRS, which supports the idea that the genetic heterogeneity between this variant form of WRS and EIF2AK3 WRS correlates with some clinical heterogeneity.
                Bookmark

                Author and article information

                Journal
                Hepat Mon
                Hepat Mon
                10.5812/hepatmon
                Kowsar
                Hepatitis Monthly
                Kowsar
                1735-143X
                1735-3408
                09 June 2013
                June 2013
                : 13
                : 6
                : e10124
                Affiliations
                [1 ]Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, IR Iran
                [2 ]Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
                [3 ]Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, IR Iran
                [4 ]Department of Pediatrics, Mofid Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
                [5 ]Department of Genetics and Reproduction, Avicenna Research Center, Tehran, IR Iran
                [6 ]Endocrine and Metabolic Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
                Author notes
                [* ]Maryam Razzaghy Azar, Endocrine and Metabolic Research Center, Diabetes and Metabolic Clinic, Shahrivar Alley, North Kargar Ave. 1411715851, Tehran, IR Iran. Tel: +98-2166942903, Fax: +98-2166421054, E-mail: mrazar_md@ 123456yahoo.com .
                Article
                10.5812/hepatmon.10124
                3759778
                24032041
                e7414d74-0dde-4147-b422-5fa3f1c88ef5
                Copyright © 2013, Kowsar Corp.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 January 2013
                : 10 March 2013
                : 15 April 2013
                Categories
                Case Report

                Infectious disease & Microbiology
                wolcott-rallison syndrome,diabetes mellitus,spondyloepiphyseal dysplasia

                Comments

                Comment on this article