Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deciphering the Model Pathogenic Fungus Cryptococcus Neoformans

Key Points

  • The Cryptococcus neoformans genome comprises 20 Mb of DNA over 14 chromosomes, encoding 6,574 predicted genes. Unusual features include high levels of alternatively spliced genes (4.3%) and antisense messages (0.8%).

  • The genome contains many predicted transposons (5% of nucleotide content), but these are inactive most of the time. Nevertheless, such repetitive elements enable genome rearrangements, both in small regions to cause inversions, such as in the mating-type locus, and in larger regions to cause DNA-duplication events across chromosomes.

  • Development of research tools (for genetics, targeted and random mutagenesis, gene expression profiling and virulence assays) makes C. neoformans the most amenable human pathogenic fungus to study.

  • The maintenance of virulence in the fungus depends on interactions with the environment, rather than the human host. Environmental hosts can include microorganisms like amoeba or nematodes, insects or small mammals.

  • It is still unclear whether humans are infected by C. neoformans yeast cells or sexual basidiospores. The fungus is heterothallic, but can also undergo sexual recombination between strains of a single mating-type identity, suggesting a means of generating spores in the absence of an opposite mating partner.

  • Mating-type specificity is controlled by a region of the genome (the MAT locus) that is unusually large (100 kb) compared with other fungi. Comparison of this sequence in three divergent strains suggests that the region evolved from the fusion of a tetrapolar mating system into a bipolar system.

  • The ability to sense and respond to the environment is mediated by signal-transduction pathways that are conserved between C. neoformans and other fungi; however, most of the upstream receptors and downstream transcriptional regulators are divergent, as is the crosstalk between the pathways. In addition, the genome contains many uncharacterized signal-transduction proteins.

Abstract

Cryptococcus neoformans is a basidiomycete fungal pathogen of humans that has diverged considerably from other model fungi such as Neurospora crassa, Aspergillus nidulans, Saccharomyces cerevisiae and the common human fungal pathogen Candida albicans. The recent completion of the genome sequences of two related C. neoformans strains and the ongoing genome sequencing of three other divergent Cryptococcus strains with different virulence phenotypes and environmental distributions should improve our understanding of this important pathogen. We discuss the biology of C. neoformans in light of this genomic data, with a special emphasis on the role that evolution and sexual reproduction have in the complex relationships of the fungus with the environment and the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinguishing features of Cryptococcus neoformans.
Figure 2: The Cryptococcus neoformans genome.
Figure 3: Virulence pathway of Cryptococcus neoformans.
Figure 4: Model of the Cryptococcus neoformans life cycle.
Figure 5: Cryptococcus neoformans signal-transduction systems.

Similar content being viewed by others

References

  1. Xu, J., Vilgalys, R. & Mitchell, T. G. Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans. Mol. Ecol. 9, 1471–1481 (2000).

    CAS  PubMed  Google Scholar 

  2. Kwon-Chung, K. J., Boekhout, T., Fell, J. W. & Diaz, M. Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon 51, 804–806 (2002).

    Google Scholar 

  3. Hoang, L. M., Maguire, J. A., Doyle, P., Fyfe, M. & Roscoe, D. L. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997–2002): epidemiology, microbiology and histopathology. J. Med. Microbiol. 53, 935–940 (2004).

    Article  PubMed  Google Scholar 

  4. Taylor, T. N., Hass, H. & Kerp, H. The oldest fossil ascomycetes. Nature 399, 648 (1999).

    CAS  PubMed  Google Scholar 

  5. Loftus, B. J. et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307, 1321–1324 (2005). First report on a genome sequence for C. neoformans.

    PubMed  PubMed Central  Google Scholar 

  6. Mitchell, T. G. & Perfect, J. R. Cryptococcosis in the era of AIDS — 100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8, 515–548 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gorlach, J. M., McDade, H. C., Perfect, J. R. & Cox, G. M. Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy. Microbiology 148, 213–219 (2002).

    CAS  PubMed  Google Scholar 

  8. Liu, H., Cottrell, T. R., Pierini, L. M., Goldman, W. E. & Doering, T. L. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160, 463–470 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Kellis, M., Birren, B. W. & Lander, E. S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    CAS  PubMed  Google Scholar 

  11. Dietrich, F. S. et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004).

    CAS  PubMed  Google Scholar 

  12. Jones, T. et al. The diploid genome sequence of Candida albicans. Proc. Natl Acad. Sci. USA 101, 7329–7334 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cushion, M. T. Comparative genomics of Pneumocystis carinii with other protists: implications for life style. J. Eukaryot. Microbiol. 51, 30–37 (2004).

    CAS  PubMed  Google Scholar 

  14. Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).

    CAS  PubMed  Google Scholar 

  15. Martinez, D. et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22, 695–700 (2004).

    CAS  Google Scholar 

  16. Goodwin, T. J. D. & Poulter, R. T. M. The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast 18, 865–880 (2001).

    CAS  PubMed  Google Scholar 

  17. Cruz, M. C. et al. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol. Cell. Biol. 19, 4101–4112 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hickey, D. A. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    CAS  PubMed  Google Scholar 

  20. Cottarel, G., Shero, J. H., Hieter, P. & Hegemann, J. H. A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 3342–3349 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fraser, J. A. et al. Convergent evolution of chromosomal sex-determining regions in the animal and fungal Kingdoms. PLoS Biol. 2, E384 (2004). Details the evolution of the mating-type locus in Cryptococus species.

    PubMed  PubMed Central  Google Scholar 

  22. Fraser, J. A. et al. Chromosomal translocation and segmental duplication in Cryptococcus neoformans. Eukaryot. Cell 4, 401–406 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Speed, B. & Dunt, D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin. Infect. Dis. 21, 28–36 (1995).

    CAS  PubMed  Google Scholar 

  24. Sukroongreung, S., Kitiniyom, K., Nilakul, C. & Tantimavanich, S. Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Med. Mycol. 36, 419–424 (1998). Assays the effects of basidiospores versus yeast cells in establishing infection.

    CAS  PubMed  Google Scholar 

  25. Vartivarian, S. E. et al. Regulation of cryptococcal capsular polysaccharide by iron. J. Infect. Dis. 167, 186–190 (1993).

    CAS  PubMed  Google Scholar 

  26. Aksenov, S. I., Babyeva, I. P. & Golubev, V. I. On the mechanism of adaptation of micro-organisms to conditions of extreme low humidity. Life Sci. Space Res. 11, 55–61 (1973).

    CAS  PubMed  Google Scholar 

  27. Granger, D. L., Perfect, J. R. & Durack, D. T. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J. Clin. Invest. 76, 508–516 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bose, I., Reese, A. J., Ory, J. J., Janbon, G. & Doering, T. L. A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot. Cell 2, 655–663 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaragoza, O., Fries, B. C. & Casadevall, A. Induction of capsule growth in Cryptococcus neoformans by mammalian serum and CO2 . Infect. Immun. 71, 6155–6164 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. McFadden, D. C. & Casadevall, A. Capsule and melanin synthesis in Cryptococcus neoformans. Med. Mycol. 39S1, 19–30 (2001).

    Google Scholar 

  31. Nosanchuk, J. D., Rudolph, J., Rosas, A. L. & Casadevall, A. Evidence that Cryptococcus neoformans is melanized in pigeon excreta: implications for pathogenesis. Infect. Immun. 67, 5477–5479 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nosanchuk, J. D., Rosas, A. L., Lee, S. C. & Casadevall, A. Melanisation of Cryptococcus neoformans in human brain tissue. Lancet 355, 2049–2050 (2000).

    CAS  PubMed  Google Scholar 

  33. Casadevall, A., Rosas, A. L. & Nosanchuk, J. D. Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 3, 354–358 (2000).

    CAS  PubMed  Google Scholar 

  34. Zhu, X. & Williamson, P. R. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5, 1–10 (2004).

    CAS  PubMed  Google Scholar 

  35. Pukkila-Worley, R. et al. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4, 190–201 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Missall, T. A., Moran, J. M., Corbett, J. A. & Lodge, J. K. Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot. Cell 4, 202–208 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lian, T. et al. Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 55, 1452–1472 (2005).

    CAS  PubMed  Google Scholar 

  38. Alspaugh, J. A., Cavallo, L. M., Perfect, J. R. & Heitman, J. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol. 36, 352–365 (2000).

    CAS  PubMed  Google Scholar 

  39. Casadevall, A., Steenbergen, J. N. & Nosanchuk, J. D. 'Ready made' virulence and 'dual use' virulence factors in pathogenic environmental fungi — the Cryptococcus neoformans paradigm. Curr. Opin. Microbiol. 6, 332–337 (2003).

    PubMed  Google Scholar 

  40. Apidianakis, Y. et al. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot. Cell 3, 413–419 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mylonakis, E., Ausubel, F. M., Perfect, J. R., Heitman, J. & Calderwood, S. B. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl Acad. Sci. USA 99, 15675–15680 (2002). The model nematode C. elegans can be used to study the virulence of C. neoformans.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Steenbergen, J. N., Shuman, H. A. & Casadevall, A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl Acad. Sci. USA 98, 15245–15250 (2001). An environmental host can be killed by C. neoformans , therefore suggesting a mechanism to maintain virulence in the wild.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Malliaris, S. D., Steenbergen, J. N. & Casadevall, A. Cryptococcus neoformans var. gattii can exploit Acanthamoeba castellanii for growth. Med. Mycol. 42, 149–158 (2004).

    PubMed  Google Scholar 

  44. O'Brien, C. R., Krockenberger, M. B., Wigney, D. I., Martin, P. & Malik, R. Retrospective study of feline and canine cryptococcosis in Australia from 1981 to 2001: 195 cases. Med. Mycol. 42, 449–460 (2004).

    CAS  PubMed  Google Scholar 

  45. Lester, S. J. et al. Clinicopathologic features of an unusual outbreak of cryptococcosis in dogs, cats, ferrets, and a bird: 38 cases (January to July 2003). J. Am. Vet. Med. Assoc. 225, 1716–1722 (2004).

    PubMed  Google Scholar 

  46. Nosanchuk, J. D., Mednick, A., Shi, L. & Casadevall, A. Experimental murine cryptococcal infection results in contamination of bedding with Cryptococcus neoformans. Contemp. Top. Lab. Anim. Sci. 42, 9–12 (2003). Infected mice shed cryptococcal cells, showing a possible environment–animal–environment virulence pathway.

    CAS  PubMed  Google Scholar 

  47. Wang, C. -Y., Wu, H. -D. & Hsueh, P. -R. Nosocomial transmission of cryptococcosis. N. Engl. J. Med. 352, 1271–1272 (2005). A rare case of human–human transmission of C. neoformans.

    CAS  PubMed  Google Scholar 

  48. Luberto, C. et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Invest. 112, 1080–1094 (2003). Deletion of antiphagocytic protein 1 either enhances or reduces virulence relative to wild type, dependent on the mouse genetic background.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Murphy, J. W. Protective cell-mediated immunity against Cryptococcus neoformans. Res. Immunol. 149, 373–386 (1998).

    CAS  PubMed  Google Scholar 

  50. Huffnagle, G. B. & Lipscomb, M. F. Cells and cytokines in pulmonary cryptococcosis. Res. Immunol. 149, 387–396 (1998).

    CAS  PubMed  Google Scholar 

  51. Tucker, S. C. & Casadevall, A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl Acad. Sci. USA 99, 3165–3170 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Garcia-Hermoso, D., Janbon, G. & Dromer, F. Epidemiological evidence for dormant Cryptococcus neoformans infection. J. Clin. Microbiol. 37, 3204–3209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Santangelo, R. et al. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect. Immun. 72, 2229–2239 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chrétien, F. et al. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J. Infect. Dis. 186, 522–530 (2002).

    PubMed  Google Scholar 

  55. Olszewski, M. A. et al. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am. J. Pathol. 164, 1761–1771 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang, Y. C. et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood–brain barrier. Infect. Immun. 72, 4985–4995 (2004). Characterizes a process by which C. neoformans crosses the blood–brain barrier.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, S. H. M. et al. Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J. Med. Microbiol. 52, 961–970 (2003).

    CAS  PubMed  Google Scholar 

  58. Noverr, M. C., Williamson, P. R., Fajardo, R. S. & Huffnagle, G. B. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect. Immun. 72, 1693–1699 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kwon-Chung, K. J. A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67, 1197–1200 (1975).

    CAS  PubMed  Google Scholar 

  60. Kwon-Chung, K. J. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68, 821–833 (1976).

    CAS  PubMed  Google Scholar 

  61. Fraser, J. A., Subaran, R. L., Nichols, C. B. & Heitman, J. Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot. Cell 2, 1036–1045 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nielsen, K. et al. Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect. Immun. 71, 4831–4841 (2003). Demonstrates that a and α cells are equally virulent in the most commonly isolated clinical form of C. neoformans.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Litvintseva, A. P. et al. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot. Cell 2, 1162–1168 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Halliday, C. L. & Carter, D. A. Clonal reproduction and limited dispersal in an environmental population of Cryptococcus neoformans var gattii isolates from Australia. J. Clin. Microbiol. 41, 703–711 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lengeler, K. B., Cox, G. M. & Heitman, J. Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the mating-type locus. Infect. Immun. 69, 115–122 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kwon-Chung, K. J., Edman, J. C. & Wickes, B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect. Immun. 60, 602–605 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kwon-Chung, K. J. & Bennett, J. E. Distribution of α and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am. J. Epidemiol. 108, 337–340 (1978).

    CAS  PubMed  Google Scholar 

  68. Nielsen, K. et al. Cryptococcus neoformans α strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73, 4922–4933 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, X., Hull, C. M. & Heitman, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature, 434, 1017–1021 (2005). The monokaryotic fruiting process is actually a form of self-sex.

    CAS  PubMed  Google Scholar 

  70. Wickes, B. L., Mayorga, M. E., Edman, U. & Edman, J. C. Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc. Natl Acad. Sci. USA 93, 7327–7331 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tscharke, R. L., Lazera, M., Chang, Y. C., Wickes, B. L. & Kwon-Chung, K. J. Haploid fruiting in Cryptococcus neoformans is not mating type α-specific. Fungal Genet. Biol. 39, 230–237 (2003).

    CAS  PubMed  Google Scholar 

  72. Hull, C. M., Boily, M. -J. & Heitman, J. Sex-specific homeodomain proteins Sxi1α and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. Cell 4, 526–535 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hull, C. M., Davidson, R. C. & Heitman, J. Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1α. Genes Dev. 16, 3046–3060 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Neilson, J. B., Fromtling, R. A. & Bulmer, G. S. Cryptococcus neoformans: size range of infectious particles from aerosolized soil. Infect. Immun. 17, 634–638 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  76. Herskowitz, I., Rine, J. & Strathern, J. N. Mating type determination and mating-type interconversion in Saccharomyces cerevisiae (eds Jones, E. W., Pringle, J. R. & Broach, J. R.) 583–656 (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  77. Kronstad, J. W. & Staben, C. Mating type in filamentous fungi. Annu. Rev. Genet. 31, 245–276 (1997).

    CAS  PubMed  Google Scholar 

  78. Lengeler, K. B. et al. Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot. Cell 1, 704–718 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller, M. A., Cutter, A. D., Yamamoto, I., Ward, S. & Greenstein, D. Clustered organization of reproductive genes in the C. elegans genome. Curr. Biol. 14, 1284–1290 (2004).

    CAS  PubMed  Google Scholar 

  80. Stein, L. D. et al. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 1, E45 (2003).

    PubMed  PubMed Central  Google Scholar 

  81. Nicolas, M. et al. A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol. 3, E4 (2005).

    PubMed  Google Scholar 

  82. Liu, Z. et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427, 348–352 (2004).

    CAS  PubMed  Google Scholar 

  83. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    CAS  PubMed  Google Scholar 

  84. Lengeler, K. B. et al. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64, 746–785 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, P., Cutler, J., King, J. & Palmer, D. Mutation of the regulator of G protein signaling Crg1 increases virulence in Cryptococcus neoformans. Eukaryot. Cell 3, 1028–1035 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kraus, P. R., Fox, D. S., Cox, G. M. & Heitman, J. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48, 1377–1387 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Luberto, C. et al. Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 15, 201–212 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Heung, L. J., Luberto, C., Plowden, A., Hannun, Y. A. & Del Poeta, M. The sphingolipid pathway regulates Pkc1 through the formation of diacylglycerol in Cryptococcus neoformans. J. Biol. Chem. 279, 21144–21153 (2004).

    CAS  PubMed  Google Scholar 

  89. Bahn, Y. -S., Kojima, K., Cox, G. M. & Heitman, J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol. Biol. Cell 16, 2285–2300 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hicks, J. K., D'Souza, C. A., Cox, G. M. & Heitman, J. Cyclic AMP-dependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 3, 14–26 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. D'Souza, C. A. et al. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol. Cell Biol. 21, 3179–3191 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bahn, Y. -S., Hicks, J. K., Giles, S. S., Cox, G. M. & Heitman, J. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot. Cell 3, 1476–1491 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Alspaugh, J. A., Perfect, J. R. & Heitman, J. Cryptococcus neoformans mating and virulence are regulated by the G-protein α subunit GPA1 and cAMP. Genes Dev. 11, 3206–3217 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Alspaugh, J. A. et al. Adenylyl cyclase functions downstream of the Gα protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot. Cell 1, 75–84 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Harashima, T. & Heitman, J. The Gα protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gβ subunits. Mol. Cell 10, 163–173 (2002).

    CAS  PubMed  Google Scholar 

  96. Waugh, M. S. et al. Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology 148, 191–201 (2002).

    CAS  PubMed  Google Scholar 

  97. Odom, A. et al. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16, 2576–2589 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fox, D. S. et al. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol. Microbiol. 39, 835–849 (2001).

    CAS  PubMed  Google Scholar 

  99. Görlach, J. et al. Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J. 19, 3618–3629 (2000).

    PubMed  PubMed Central  Google Scholar 

  100. Kraus, P. R., Nichols, C. B. & Heitman, J. Calcium and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot. Cell 4, 1079–1087 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, P., Cardenas, M. E., Cox, G. M., Perfect, J. R. & Heitman, J. Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep. 2, 511–518 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Idnurm, A. & Heitman, J. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 3, 615–626 (2005). Light is an environmental signal for the fungus, and genes required for its detection also regulate virulence.

    CAS  Google Scholar 

  103. Lu, Y. -K., Sun, K. -H. & Shen, W. -C. Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol. Microbiol. 56, 280–291 (2005).

    Google Scholar 

  104. Smith, M. L., Bruhn, J. N. & Anderson, J. B. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356, 428–431 (1992).

    Google Scholar 

  105. Ferguson, B. A., Dreisbach, T. A., Parks, C. G., Filip, G. M. & Schmitt, C. L. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Moutains of northeast Oregon. Can. J. For. Res. 33, 612–623 (2003).

    Google Scholar 

  106. Marra, R. E. et al. A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans). Genetics 167, 619–931 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Davidson, R. C. et al. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148, 2607–2615 (2002).

    CAS  PubMed  Google Scholar 

  108. Toffaletti, D. L., Rude, T. H., Johnston, S. A., Durack, D. T. & Perfect, J. R. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J. Bacteriol. 175, 1405–1411 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Idnurm, A., Reedy, J. L., Nussbaum, J. C. & Heitman, J. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot. Cell 3, 420–429 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhu, X. & Williamson, P. R. A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans. Mol. Microbiol. 50, 1271–1282 (2003).

    CAS  PubMed  Google Scholar 

  111. Erickson, T. et al. Multiple virulence factors of Cryptococcus neoformans are dependent on VPH1. Mol. Microbiol. 42, 1121–1131 (2001).

    CAS  PubMed  Google Scholar 

  112. Nelson, R. T., Hua, J., Pryor, B. & Lodge, J. K. Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis. Genetics 157, 935–947 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lodge, J. K., Jackson-Machelski, E., Toffaletti, D. L., Perfect, J. R. & Gordon, J. I. Targeted gene replacement demonstrates that myristoyl-CoA: protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. Proc. Natl Acad. Sci. USA 91, 12008–12012 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vallim, M. A., Fernandes, L. & Alspaugh, J. A. The RAM1 gene encoding a protein-farnesyltransferase β-subunit homologue is essential in Cryptococcus neoformans. Microbiology 150, 1925–1935 (2004).

    CAS  PubMed  Google Scholar 

  115. Del Poeta, M. et al. Topoisomerase I is essential in Cryptococcus neoformans: role in pathobiology and as an antifungal target. Genetics 152, 167–178 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Reese, A. J. & Doering, T. L. Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 50, 1401–1409 (2003).

    CAS  PubMed  Google Scholar 

  117. de Jesús-Berríos, M. et al. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13, 1963–1968 (2003).

    PubMed  Google Scholar 

  118. Steen, B. R. et al. Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res. 12, 1386–1400 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Steen, B. R. et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot. Cell 2, 1336–1349 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kraus, P. R. et al. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot. Cell 3, 1249–1260 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Missall, T. A., Pusateri, M. E. & Lodge, J. K. Thiol peroxidase is critical for virulence and resistance to nitric oxide and peroxide in the fungal pathogen, Cryptococcus neoformans. Mol. Microbiol. 51, 1447–1458 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We have regrettably been unable to include all papers featuring C. neoformans in this review, and apologize to those colleagues whose work we were unable to cover in detail. Research by the authors is supported by the Howard Hughes Medical Institute and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Heitman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

Cryptococcus neoformans var. grubii H99

Cryptococcus neoformans var. neoformans B-3501A

Cryptococcus neoformans var. neoformans JEC21

Cryptococcus gattii R265

Cryptococcus gattii WM276

Mycobacterium tuberculosis

FURTHER INFORMATION

Joseph Heitman's laboratory

Cryptococcus neoformans cDNA Sequencing

Cryptococcus neoformans Genome Project

Cryptococcus neoformans Serotype A Database

Cryptococcus neoformans Serotype A Strain H99 Sequence

Cryptococcus neoformans Summary

The TIGR Cryptococcus neoformans Database

Glossary

MAT LOCUS

A mating-type locus is a region in a fungal genome that confers sexual identity.

GRANULOMA

A cluster of cells that is formed in response to specific infection agents.

HILAR LYMPH NODES

Specialized immune-system organs that are localized in the mediastinum (thoracic cavity) and that monitor infectious agents in the lung.

TRANSCYTOSIS

Movement of cells through other cells.

CONGENIC

Individuals that are identical at the genetic level, with the exception of one region. Often created by backcrossing during mating.

CLAMP CONNECTION

A short branch connecting one cell to the previous cell in hyphae, and a defining feature of the basidiomycetes.

PARASEXUAL

A form of reproduction characterized in fungi which enables mitotic recombination without meiosis, and usually involves reduction of a diploid to a haploid through whole-chromosome loss.

HOMEODOMAIN

A region of a protein that binds to DNA through a helix–turn–helix motif.

SYNAPTONEMAL COMPLEX

Protein structures that link homologous chromosomes to promote double strand breaks, causing recombination during meiosis.

ALVEOLUS

The smallest functional unit of the lung in which gas exchange occurs.

DIOECIOUS

A plant in which the male and female reproductive organs are located in flowers on different plants.

KELCH REPEAT

First discovered as repeated elements in the Drosophila Kelch ORF1 protein. A series of four to seven repeated kelch motifs is predicted to have a β-propeller-like tertiary structure, which mediates potential protein–protein interactions.

CALCINEURIN

A serine–threonine-specific protein phosphatase that is activated by calcium-calmodulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idnurm, A., Bahn, YS., Nielsen, K. et al. Deciphering the Model Pathogenic Fungus Cryptococcus Neoformans. Nat Rev Microbiol 3, 753–764 (2005). https://doi.org/10.1038/nrmicro1245

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1245

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing