Skip to main content

Reverse Genetics Systems for the De Novo Rescue of Diverse Members of Paramyxoviridae

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2733))

Abstract

Paramyxoviruses place significant burdens on both human and wildlife health; while some paramyxoviruses are established within human populations, others circulate within diverse animal reservoirs. Concerningly, bat-borne paramyxoviruses have spilled over into humans with increasing frequency in recent years, resulting in severe disease. The risk of future zoonotic outbreaks, as well as the persistence of paramyxoviruses that currently circulate within humans, highlights the need for efficient tools through which to interrogate paramyxovirus biology. Reverse genetics systems provide scientists with the ability to rescue paramyxoviruses de novo, offering versatile tools for implementation in both research and public health settings. Reverse genetics systems have greatly improved over the past 30 years, with several key innovations optimizing the success of paramyxovirus rescue. Here, we describe the significance of such advances and provide a generally applicable guide for the development and use of reverse genetics systems for the rescue of diverse members of Paramyxoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plemper RK, Lamb RA (2020) Paramyxoviridae: the viruses and their replication. Fields Virol 1(7):504–558

    Google Scholar 

  2. Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67(8):4822–4830. https://doi.org/10.1128/JVI.67.8.4822-4830.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Virtue ER, Marsh GA, Wang L-F (2009) Paramyxoviruses infecting humans: the old, the new and the unknown. Future Microbiol 4(5):537–554. https://doi.org/10.2217/fmb.09.26

    Article  PubMed  Google Scholar 

  4. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, Binger T, Gloza-Rausch F, Cottontail VM, Rasche A, Yordanov S, Seebens A, Knörnschild M, Oppong S, Adu Sarkodie Y, Pongombo C, Lukashev AN, Schmidt-Chanasit J, Stöcker A, Carneiro AJB, Erbar S, Maisner A, Fronhoffs F, Buettner R, Kalko EKV, Kruppa T, Franke CR, Kallies R, Yandoko ERN, Herrler G, Reusken C, Hassanin A, Krüger DH, Matthee S, Ulrich RG, Leroy EM, Drosten C (2012) Bats host major mammalian paramyxoviruses. Nat Commun 3:796. https://doi.org/10.1038/ncomms1796

    Article  CAS  PubMed  Google Scholar 

  5. Samal SK (2008) Paramyxoviruses of animals. In: Encyclopedia of virology, p 40

    Google Scholar 

  6. Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B (2017) Zoonotic potential of emerging paramyxoviruses: knowns and unknowns. Adv Virus Res 98:1–55. https://doi.org/10.1016/bs.aivir.2016.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amman BR, Albariño CG, Bird BH, Nyakarahuka L, Sealy TK, Balinandi S, Schuh AJ, Campbell SM, Ströher U, Jones MEB, Vodzack ME, Reeder DM, Kaboyo W, Nichol ST, Towner JS (2015) A recently discovered pathogenic paramyxovirus, Sosuga virus, is present in Rousettus aegyptiacus fruit bats at multiple locations in Uganda. J Wildl Dis 51(3):774–779. https://doi.org/10.7589/2015-02-044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Albariño CG, Foltzer M, Towner JS, Rowe LA, Campbell S, Jaramillo CM, Bird BH, Reeder DM, Vodzak ME, Rota P, Metcalfe MG, Spiropoulou CF, Knust B, Vincent JP, Frace MA, Nichol ST, Rollin PE, Ströher U (2014) Novel paramyxovirus associated with severe acute febrile disease, South Sudan and Uganda, 2012. Emerg Infect Dis 20(2):211–216. https://doi.org/10.3201/eid2002.131620

    Article  CAS  PubMed  Google Scholar 

  9. Philbey AW, Kirkland PD, Ross AD, Davis RJ, Gleeson AB, Love RJ, Daniels PW, Gould AR, Hyatt AD (1998) An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg Infect Dis 4(2):269–271. https://doi.org/10.3201/eid0402.980214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eaton BT, Broder CC, Middleton D, Wang L-F (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4(1):23–35. https://doi.org/10.1038/nrmicro1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BW (2000) Nipah virus: a recently emergent deadly paramyxovirus. Science 288(5470):1432–1435. https://doi.org/10.1126/science.288.5470.1432

    Article  CAS  PubMed  Google Scholar 

  12. Krüger N, Sauder C, Hüttl S, Papies J, Voigt K, Herrler G, Hardes K, Steinmetzer T, Örvell C, Drexler JF, Drosten C, Rubin S, Müller MA, Hoffmann M (2018) Entry, replication, immune evasion, and neurotoxicity of synthetically engineered bat-borne mumps virus. Cell Rep 25(2):312–320.e317. https://doi.org/10.1016/j.celrep.2018.09.018

    Article  CAS  PubMed  Google Scholar 

  13. Ikegame S, Carmichael JC, Wells H, Furler O’Brien RL, Acklin JA, Chiu H-P, Oguntuyo KY, Cox RM, Patel AR, Kowdle S, Stevens CS, Eckley M, Zhan S, Lim JK, Veit EC, Evans MJ, Hashiguchi T, Durigon E, Schountz T, Epstein JH, Plemper RK, Daszak P, Anthony SJ, Lee B (2023) Metagenomics-enabled reverse-genetics assembly and characterization of myotis bat morbillivirus. Nat Microbiol 8(6):1108–1122. https://doi.org/10.1038/s41564-023-01380-4

  14. Park KH, Huang T, Correia FF, Krystal M (1991) Rescue of a foreign gene by Sendai virus. Proc Natl Acad Sci U S A 88(13):5537–5541. https://doi.org/10.1073/pnas.88.13.5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimock K, Collins PL (1993) Rescue of synthetic analogs of genomic RNA and replicative-intermediate RNA of human parainfluenza virus type 3. J Virol 67(5):2772–2778. https://doi.org/10.1128/JVI.67.5.2772-2778.1993

    Article  CAS  PubMed  Google Scholar 

  16. Collins PL, Mink MA, Stec DS (1991) Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc Natl Acad Sci U S A 88(21):9663–9667. https://doi.org/10.1073/pnas.88.21.9663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dötsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned DNA. EMBO J 14(23):5773–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcin D, Pelet T, Calain P, Roux L, Curran J, Kolakofsky D (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 14(24):6087–6094. https://doi.org/10.1002/j.1460-2075.1995.tb00299.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Collins PL, Hill MG, Camargo E, Grosfeld H, Chanock RM, Murphy BR (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci 92(25):11563–11567. https://doi.org/10.1073/pnas.92.25.11563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borkotoky S, Murali A (2018) The highly efficient T7 RNA polymerase: a wonder macromolecule in biological realm. Int J Biol Macromol 118(Pt A):49–56. https://doi.org/10.1016/j.ijbiomac.2018.05.198

    Article  CAS  PubMed  Google Scholar 

  21. Fuerst TR, Earl PL, Moss B (1987) Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol 7(7):2538–2544. https://doi.org/10.1128/mcb.7.7.2538-2544.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buchholz UJ, Finke S, Conzelmann K-K (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259. https://doi.org/10.1128/jvi.73.1.251-259.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beaty SM, Park A, Won ST, Hong P, Lyons M, Vigant F, Freiberg AN, tenOever BR, Duprex WP, Lee B (2017) Efficient and robust paramyxoviridae reverse genetics systems. mSphere 2(2). https://doi.org/10.1128/mSphere.00376-16

  24. Yun T, Park A, Hill TE, Pernet O, Beaty SM, Juelich TL, Smith JK, Zhang L, Wang YE, Vigant F, Gao J, Wu P, Lee B, Freiberg AN (2015) Efficient reverse genetics reveals genetic determinants of budding and fusogenic differences between Nipah and Hendra viruses and enables real-time monitoring of viral spread in small animal models of henipavirus infection. J Virol 89(2):1242–1253. https://doi.org/10.1128/JVI.02583-14

    Article  CAS  PubMed  Google Scholar 

  25. Li B-Y, Li X-R, Lan X, Yin X-P, Li Z-Y, Yang B, Liu J-X (2011) Rescue of Newcastle disease virus from cloned cDNA using an RNA polymerase II promoter. Arch Virol 156(6):979–986. https://doi.org/10.1007/s00705-011-0932-0

    Article  CAS  PubMed  Google Scholar 

  26. Griffin BD, Leung A, Chan M, Warner BM, Ranadheera C, Tierney K, Audet J, Frost KL, Safronetz D, Embury-Hyatt C, Booth SA, Kobasa D (2019) Establishment of an RNA polymerase II-driven reverse genetics system for Nipah virus strains from Malaysia and Bangladesh. Sci Rep 9(1):11171. https://doi.org/10.1038/s41598-019-47549-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chey S, Palmer JM, Doerr L, Liebert UG (2021) Dual promoters improve the rescue of recombinant measles virus in human cells. Viruses 13(9):1723. https://doi.org/10.3390/v13091723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin CT, Muller DK, Coleman JE (1988) Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27(11):3966–3974. https://doi.org/10.1021/bi00411a012

    Article  CAS  PubMed  Google Scholar 

  29. Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72(2):891–899. https://doi.org/10.1128/JVI.72.2.891-899.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Egelman EH, Wu SS, Amrein M, Portner A, Murti G (1989) The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63(5):2233–2243. https://doi.org/10.1128/JVI.63.5.2233-2243.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gutsche I, Desfosses A, Effantin G, Ling WL, Haupt M, Ruigrok RWH, Sachse C, Schoehn G (2015) Structural virology. Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 348(6235):704–707. https://doi.org/10.1126/science.aaa5137

    Article  CAS  PubMed  Google Scholar 

  32. Alayyoubi M, Leser GP, Kors CA, Lamb RA (2015) Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein – RNA complex. Proc Natl Acad Sci 112(14). https://doi.org/10.1073/pnas.1503941112

  33. Ker D-S, Jenkins HT, Greive SJ, Antson AA (2021) CryoEM structure of the Nipah virus nucleocapsid assembly. PLoS Pathog 17(7):e1009740. https://doi.org/10.1371/journal.ppat.1009740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McClure H, Feinberg MB, Brahic M, Tangy F (2003) A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 77(21):11546–11554. https://doi.org/10.1128/jvi.77.21.11546-11554.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Conzelmann KK (2004) Reverse genetics of mononegavirales. Curr Top Microbiol Immunol 283:1–41. https://doi.org/10.1007/978-3-662-06099-5_1

    Article  CAS  PubMed  Google Scholar 

  36. Martin A, Staeheli P, Schneider U (2006) RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol 80(12):5708–5715. https://doi.org/10.1128/JVI.02389-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gassen U, Collins FM, Duprex WP, Rima BK (2000) Establishment of a rescue system for canine distemper virus. J Virol 74(22):10737–10744. https://doi.org/10.1128/jvi.74.22.10737-10744.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. von Messling V, Springfeld C, Devaux P, Cattaneo R (2003) A ferret model of canine distemper virus virulence and immunosuppression. J Virol 77(23):12579–12591. https://doi.org/10.1128/jvi.77.23.12579-12591.2003

    Article  Google Scholar 

  39. Baron MD, Barrett T (1997) Rescue of rinderpest virus from cloned cDNA. J Virol 71(2):1265–1271. https://doi.org/10.1128/JVI.71.2.1265-1271.1997

    Article  CAS  PubMed  Google Scholar 

  40. Hu Q, Chen W, Huang K, Baron MD, Bu Z (2012) Rescue of recombinant peste des petits ruminants virus: creation of a GFP-expressing virus and application in rapid virus neutralization test. Vet Res 43:48. https://doi.org/10.1186/1297-9716-43-48

    Article  CAS  PubMed  Google Scholar 

  41. Liu F, Li L, Liu Y, Sun C, Liu C, Wu X, Wang Z (2019) Development of reverse genetics system for small ruminant morbillivirus: rescuing recombinant virus to express Echinococcus granulosus EG95 antigen. Virus Res 261:50–55. https://doi.org/10.1016/j.virusres.2018.12.008

    Article  CAS  Google Scholar 

  42. Liu F, Zhang Y, Li L, Zuo Y, Sun C, Xiaodong W, Wang Z (2019) Rescue of eGFP-expressing small ruminant morbillivirus for identifying susceptibilities of eight mammalian cell lines to its infection. Virus Res 261:60–64. https://doi.org/10.1016/j.virusres.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  43. Muniraju M, Mahapatra M, Buczkowski H, Batten C, Banyard AC, Parida S (2015) Rescue of a vaccine strain of peste des petits ruminants virus: in vivo evaluation and comparison with standard vaccine. Vaccine 33(3):465–471. https://doi.org/10.1016/j.vaccine.2014.10.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Z, Hung C, Paterson RG, Michel F, Fuentes S, Place R, Lin Y, Hogan RJ, Lamb RA, He B (2015) Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion. Proc Natl Acad Sci U S A 112(40):12504–12509. https://doi.org/10.1073/pnas.1509476112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Engeland CE, Bossow S, Hudacek AW, Hoyler B, Förster J, Veinalde R, Jäger D, Cattaneo R, Ungerechts G, Springfeld C (2017) A Tupaia paramyxovirus vector system for targeting and transgene expression. J Gen Virol 98(9):2248–2257. https://doi.org/10.1099/jgv.0.000887

    Article  CAS  PubMed  Google Scholar 

  46. Yoneda M, Guillaume V, Ikeda F, Sakuma Y, Sato H, Wild TF, Kai C (2006) Establishment of a Nipah virus rescue system. Proc Natl Acad Sci U S A 103(44):16508–16513. https://doi.org/10.1073/pnas.0606972103

    Article  CAS  PubMed Central  Google Scholar 

  47. Lo MK, Peeples ME, Bellini WJ, Nichol ST, Rota PA, Spiropoulou CF (2012) Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response. PLoS One 7(10):e47790. https://doi.org/10.1371/journal.pone.0047790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marsh GA, Virtue ER, Smith I, Todd S, Arkinstall R, Frazer L, Monaghan P, Smith GA, Broder CC, Middleton D, Wang L-F (2013) Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets. Virol J 10:95. https://doi.org/10.1186/1743-422X-10-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laing ED, Amaya M, Navaratnarajah CK et al (2018) Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virology

    Google Scholar 

  50. Newman JT, Surman SR, Riggs JM, Hansen CT, Collins PL, Murphy BR, Skiadopoulos MH (2002) Sequence analysis of the Washington/1964 strain of human parainfluenza virus type 1 (HPIV1) and recovery and characterization of wild-type recombinant HPIV1 produced by reverse genetics. Virus Genes 24(1):77–92. https://doi.org/10.1023/a:1014042221888

    Article  CAS  PubMed  Google Scholar 

  51. Durbin AP, Hall SL, Siew JW, Whitehead SS, Collins PL, Murphy BR (1997) Recovery of infectious human parainfluenza virus type 3 from cDNA. Virology 235(2):323–332. https://doi.org/10.1006/viro.1997.8697

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt AC, McAuliffe JM, Huang A, Surman SR, Bailly JE, Elkins WR, Collins PL, Murphy BR, Skiadopoulos MH (2000) Bovine parainfluenza virus type 3 (BPIV3) fusion and hemagglutinin-neuraminidase glycoproteins make an important contribution to the restricted replication of BPIV3 in primates. J Virol 74(19):8922–8929. https://doi.org/10.1128/jvi.74.19.8922-8929.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hou X, Suquilanda E, Zeledon A, Kacsinta A, Moore A, Seto J, McQueen N (2005) Mutations in Sendai virus variant F1-R that correlate with plaque formation in the absence of trypsin. Med Microbiol Immunol 194(3):129–136. https://doi.org/10.1007/s00430-004-0224-3

    Article  CAS  PubMed  Google Scholar 

  54. Bajimaya S, Hayashi T, Takimoto T (2017) Rescue of Sendai virus from cloned cDNA. Methods Mol Biol 1602:103–110. https://doi.org/10.1007/978-1-4939-6964-7_7

    Article  CAS  PubMed  Google Scholar 

  55. Krishnamurthy S, Huang Z, Samal SK (2000) Recovery of a virulent strain of newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. Virology 278(1):168–182. https://doi.org/10.1006/viro.2000.0618

    Article  CAS  PubMed  Google Scholar 

  56. Nakaya T, Cros J, Park MS, Nakaya Y, Zheng H, Sagrera A, Villar E, García-Sastre A, Palese P (2001) Recombinant Newcastle disease virus as a vaccine vector. J Virol 75(23):11868–11873. https://doi.org/10.1128/JVI.75.23.11868-11873.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peeters BP, de Leeuw OS, Koch G, Gielkens AL (1999) Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73(6):5001–5009. https://doi.org/10.1128/JVI.73.6.5001-5009.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun W, Leist SR, McCroskery S, Liu Y, Slamanig S, Oliva J, Amanat F, Schäfer A, Dinnon KH 3rd, García-Sastre A, Krammer F, Baric RS, Palese P (2020) Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine 62:103132. https://doi.org/10.1016/j.ebiom.2020.103132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Elbehairy MA, Khattar SK, Samal SK (2021) Recovery of recombinant avian paramyxovirus type-3 strain wisconsin by reverse genetics and its evaluation as a vaccine vector for chickens. Viruses 13(2). https://doi.org/10.3390/v13020316

  60. Subbiah M, Khattar SK, Collins PL, Samal SK (2011) Mutations in the fusion protein cleavage site of avian paramyxovirus serotype 2 increase cleavability and syncytium formation but do not increase viral virulence in chickens. J Virol 85(11):5394–5405. https://doi.org/10.1128/jvi.02696-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tsunekuni R, Hikono H, Tanikawa T, Kurata R, Nakaya T, Saito T (2017) Recombinant avian paramyxovirus serotypes 2, 6, and 10 as vaccine vectors for highly pathogenic avian influenza in chickens with antibodies against newcastle disease virus. Avian Dis 61(3):296–306. https://doi.org/10.1637/11512-100616-regr1

    Article  PubMed  Google Scholar 

  62. Xiao S, Khattar SK, Subbiah M, Collins PL, Samal SK (2012) Mutation of the F-protein cleavage site of avian paramyxovirus type 7 results in furin cleavage, fusion promotion, and increased replication in vitro but not increased replication, tissue tropism, or virulence in chickens. J Virol 86(7):3828–3838. https://doi.org/10.1128/jvi.06765-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clarke DK, Sidhu MS, Johnson JE, Udem SA (2000) Rescue of mumps virus from cDNA. J Virol 74(10):4831–4838. https://doi.org/10.1128/jvi.74.10.4831-4838.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lemon K, Rima BK, McQuaid S, Allen IV, Duprex WP (2007) The F gene of rodent brain-adapted mumps virus is a major determinant of neurovirulence. J Virol 81(15):8293–8302. https://doi.org/10.1128/JVI.00266-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sauder CJ, Zhang CX, Ngo L, Werner K, Lemon K, Duprex WP, Malik T, Carbone K, Rubin SA (2011) Gene-specific contributions to mumps virus neurovirulence and neuroattenuation. J Virol 85(14):7059–7069. https://doi.org/10.1128/JVI.00245-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou D, Zhu M-Y, Wang Y-L, Hao X-Q, Zhou D-M, Liu R-X, Zhang C-D, Qu C-F, Zhao Z-Y (2019) Establishment of an efficient reverse genetic system of Mumps virus S79 from cloned DNA. World J Pediatr 15(5):499–505. https://doi.org/10.1007/s12519-019-00286-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawano M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, Tsurudome M, Ito M, Nishio M, Ito Y (2001) Recovery of infectious human parainfluenza type 2 virus from cDNA clones and properties of the defective virus without V-specific cysteine-rich domain. Virology 284(1):99–112. https://doi.org/10.1006/viro.2001.0864

    Article  CAS  PubMed  Google Scholar 

  68. Skiadopoulos MH, Vogel L, Riggs JM, Surman SR, Collins PL, Murphy BR (2003) The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol 77(1):270–279. https://doi.org/10.1128/jvi.77.1.270-279.2003

    Article  CAS  PubMed Central  Google Scholar 

  69. He B, Paterson RG, Ward CD, Lamb RA (1997) Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 237(2):249–260. https://doi.org/10.1006/viro.1997.8801

    Article  CAS  PubMed  Google Scholar 

  70. Parks GD, Ward KR, Rassa JC (2001) Increased readthrough transcription across the simian virus 5 M-F gene junction leads to growth defects and a global inhibition of viral mRNA synthesis. J Virol 75(5):2213–2223. https://doi.org/10.1128/JVI.75.5.2213-2223.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Welch SR, Chakrabarti AK, Wiggleton Guerrero L, Jenks HM, Lo MK, Nichol ST, Spiropoulou CF, Albariño CG (2018) Development of a reverse genetics system for Sosuga virus allows rapid screening of antiviral compounds. PLoS Negl Trop Dis 12(3):e0006326. https://doi.org/10.1371/journal.pntd.0006326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK (1999) Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73(11):9568–9575. https://doi.org/10.1128/JVI.73.11.9568-9575.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elankumaran S, Rockemann D, Samal SK (2006) Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J Virol 80(15):7522–7534. https://doi.org/10.1128/JVI.00241-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinf 11:129. https://doi.org/10.1186/1471-2105-11-129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benhur Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Haas, G., Lee, B. (2024). Reverse Genetics Systems for the De Novo Rescue of Diverse Members of Paramyxoviridae. In: Pérez, D.R. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 2733. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3533-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3533-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3532-2

  • Online ISBN: 978-1-0716-3533-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics