Skip to main content

Childhood Medulloblastoma: An Overview

  • Protocol
  • First Online:
Medulloblastoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2423))

Abstract

Medulloblastoma (MB) is the most common malignant pediatric brain tumor, representing 60% of childhood intracranial embryonal tumors. Despite multimodal advances in therapies over the last 20 years that have yielded a 5-year survival rate of 75%, high-risk patients (younger than 3 years, subtotal resection, metastatic lesions at diagnosis) still experience a 5-year overall survival of less than 70%. In this introductory chapter on pediatric MB, we describe the initial discrimination of MB based on histopathological examination and the more recent progress made in global gene expression profiling methods that have allowed scientists to more accurately subclassify and prognosticate on MB based on molecular characteristics. The identification of subtype-specific molecular drivers and pathways presents novel therapeutic targets that could lead to MB subtype-specific treatment modalities. Additionally, we detail how the cancer stem cell (CSC) hypothesis provides an explanation for tumor recurrence, and the potential for CSC-targeted therapies to address treatment-refractory MB. These personalized therapies can potentially increase MB survivorship and negate some of the long-term neurotoxicity associated with the current standard of care for MB patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeSouza RM, Jones BR, Lowis SP, Kurian KM (2014) Pediatric medulloblastoma - update on molecular classification driving targeted therapies. Front Oncol 4:176

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang J, Garancher A, Ramaswamy V, Wechsler-Reya RJ (2018) Medulloblastoma: from molecular subgroups to molecular targeted therapies. Annu Rev Neurosci 41:207–232

    Article  CAS  PubMed  Google Scholar 

  3. Zeltzer PM et al (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s cancer group 921 randomized phase III study. J Clin Oncol 17:832–845

    Article  CAS  PubMed  Google Scholar 

  4. Gajjar A et al (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7:813–820

    Article  PubMed  Google Scholar 

  5. Oyharcabal-Bourden V et al (2005) Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: a French Society of Pediatric Oncology Study. J Clin Oncol 23:4726–4734

    Article  CAS  PubMed  Google Scholar 

  6. Jakacki RI et al (2012) Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a Children’s oncology group phase I/II study. J Clin Oncol 30:2648–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mulhern RK et al (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol 23:5511–5519

    Article  PubMed  Google Scholar 

  8. Ribi K et al (2005) Outcome of medulloblastoma in children: long-term complications and quality of life. Neuropediatrics 36:357–365

    Article  CAS  PubMed  Google Scholar 

  9. Rutka JT, Hoffman HJ (1996) Medulloblastoma: a historical perspective and overview. J Neuro-Oncol 29:1–7

    Article  CAS  Google Scholar 

  10. Juraschka K, Taylor MD (2019) Medulloblastoma in the age of molecular subgroups: a review. J Neurosurg Pediatr 24:353–363

    Article  PubMed  Google Scholar 

  11. Orr BA (2020) Pathology, diagnostics, and classification of medulloblastoma. Brain Pathol 30:664–678

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cho YJ et al (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29:1424–1430

    Article  PubMed  Google Scholar 

  13. Northcott PA et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414

    Article  PubMed  Google Scholar 

  14. Thompson MC et al (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931

    Article  CAS  PubMed  Google Scholar 

  15. Kool M et al (2008) Integrated genomics identifies five Medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3:e3088

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kijima N, Kanemura Y (2016) Molecular classification of medulloblastoma. Neurol Med Chir 56:687–697

    Article  Google Scholar 

  17. Northcott PA, Dubuc AM, Pfister S, Taylor MD (2012) Molecular subgroups of medulloblastoma. Expert Rev Neurother 12:871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor MD et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472

    Article  CAS  PubMed  Google Scholar 

  19. Cavalli FMG et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31:737–754.e736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Northcott PA et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwalbe EC et al (2017) Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18:958–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma T et al (2019) Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of group 3 and group 4 subtypes. Acta Neuropathol 138(2):309–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibson P et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perreault S et al (2014) MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 35:1263–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang GH et al (2016) Medulloblastoma stem cells: promising targets in medulloblastoma therapy. Cancer Sci 107:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    Article  CAS  PubMed  Google Scholar 

  27. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of Colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336

    Article  CAS  PubMed  Google Scholar 

  28. Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125–131

    Article  CAS  PubMed  Google Scholar 

  29. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  30. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  32. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  33. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  35. Hemmati HD et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ignatova TN et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  37. Taylor MD et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  CAS  PubMed  Google Scholar 

  38. Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  39. Bahmad HF, Poppiti RJ (2020) Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol 73:243–249

    Article  CAS  PubMed  Google Scholar 

  40. Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J (2014) Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 33:4451–4463

    Article  CAS  PubMed  Google Scholar 

  41. Beier D et al (2012) Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. J Neuro-Oncol 109:45–52

    Article  CAS  Google Scholar 

  42. Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  43. Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T (2017) Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 18:2574

    Article  PubMed Central  Google Scholar 

  44. Liu J et al (2013) Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells. Oncotarget 4:1698–1711

    Article  PubMed  PubMed Central  Google Scholar 

  45. Menyhárt O, Győrffy B (2020) Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer Metastasis Rev 39:211–233

    Article  PubMed  PubMed Central  Google Scholar 

  46. Smoll NR, Drummond KJ (2012) The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci 19:1541–1544

    Article  PubMed  Google Scholar 

  47. Wang Y et al (2015) A novel retinoblastoma protein (RB) E3 ubiquitin ligase (NRBE3) promotes RB degradation and is transcriptionally regulated by E2F1 transcription factor. J Biol Chem 290:28200–28213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qazi MA, Bakhshinyan D, Singh SK (2019) Deciphering brain tumor heterogeneity, one cell at a time. Nat Med 25:1474–1476

    Article  CAS  PubMed  Google Scholar 

  49. Bosanac I et al (2009) The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat Struct Mol Biol 16:691–697

    Article  CAS  PubMed  Google Scholar 

  50. Robinson GW et al (2015) Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 33:2646–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: towards combination strategies with curative potential. Cell 161:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC (2019) Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 18:689–706

    Article  CAS  PubMed  Google Scholar 

  53. Newick K, Moon E, Albelda SM (2016) Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 3:16006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bachanova V, Miller JS (2014) NK cells in therapy of cancer. Crit Rev Oncog 19:133–141

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE (2019) Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front Immunol 10:766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Varela-Guruceaga M et al (2018) Oncolytic viruses as therapeutic tools for pediatric brain tumors. Cancers (Basel) 10:226

    Article  Google Scholar 

  57. Kabir TF, Kunos CA, Villano JL, Chauhan A (2020) Immunotherapy for medulloblastoma: current perspectives. Immunotargets Ther 9:57–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hutzen B et al (2019) Immunotherapeutic challenges for pediatric cancers. Mol Ther Oncolytics 15:38–48

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grabovska Y et al (2020) Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nat Commun 11:4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Campbell BB et al (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171:1042–1056.e1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suk, Y., Gwynne, W.D., Burns, I., Venugopal, C., Singh, S.K. (2022). Childhood Medulloblastoma: An Overview. In: Dey, A., Malhotra, A., Garg, N. (eds) Medulloblastoma. Methods in Molecular Biology, vol 2423. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1952-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1952-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1951-3

  • Online ISBN: 978-1-0716-1952-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics