Skip to main content

Ovarian Dysfunction in Polycystic Ovary Syndrome (PCOS)

  • Chapter
  • First Online:
Polycystic Ovary Syndrome

Abstract

The polycystic ovary (PCO) is defined by the increased number of subcapsular hyperandrogenic follicles and a tendency towards anovulation. This chapter details current knowledge regarding the morphological and functional defects present in these ovaries. Genome-wide association studies (GWAS) of women with polycystic ovary syndrome (PCOS) have revealed linkage to sites close to genes encoding proteins involved in ovarian function, but the majority have not provided definitive mechanistic explanations. Primordial follicle numbers appear normal but increase upon commencement of growth with enhanced survival creating a stockpiling effect. Much has been learned from prenatally androgenised primate models of PCOS, surplus human ovarian tissue from cryopreserved sections, in vitro cell culture models and the ability to perform microarray on small samples. Impaired folliculogenesis and failure of dominant follicle selection underlie the ovulatory dysfunction of PCOS, but ovulatory status appears to fluctuate. Members of the TGFβ family are strongly implicated both pre- and postnatally in disordered preantral and antral follicular development. Overproduction of androgens by the ovarian theca cells of PCO is intrinsic, and GWAS consistently show linkage to DENND1A, a splice variant of which increases steroidogenesis and is overexpressed in PCOS theca. Insulin resistance is common in PCOS with systemic and local ovarian effects, resulting in alteration of cell metabolism that affects both follicle growth and oocyte health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams J, Franks S, Polson DW, Mason HD, Abdulwahid N, Tucker M, et al. Multifollicular ovaries: clinical endocrine features and response to pulsatile gonadotrophin releasing hormone. Lancet. 1985;2(8469–70):1375–9.

    Article  CAS  PubMed  Google Scholar 

  2. Polson DW, Adams J, Wadsworth J, Franks S. Polycystic ovaries--a common finding in normal women. Lancet. 1988;1(8590):870–2.

    Article  CAS  PubMed  Google Scholar 

  3. Joseph-Horne R, Mason H, Batty S, White D, Hillier S, Urquhart M, et al. Luteal phase progesterone excretion in ovulatory women with polycystic ovaries. Hum Reprod. 2002;17(6):1459–63.

    Article  CAS  PubMed  Google Scholar 

  4. Franks S, Adams J, Mason H, Polson D. Ovulatory disorders in women with polycystic ovary syndrome. Clin Obstet Gynaecol. 1985;12(3):605–32.

    Article  CAS  PubMed  Google Scholar 

  5. Franks S. Polycystic ovary syndrome: a changing perspective. Clin Endocrinol. 1989;31(1):87–120.

    Article  CAS  Google Scholar 

  6. Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):e1007813. https://doi.org/10.1371/journal.pgen.1007813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43:55–9.

    Article  CAS  PubMed  Google Scholar 

  8. Shi Y, Han Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012;44:1020–5.

    Article  CAS  PubMed  Google Scholar 

  9. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;6:8464.

    Article  CAS  PubMed  Google Scholar 

  10. Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun. 2015;6:7502.

    Article  CAS  PubMed  Google Scholar 

  11. Eriksen MB, Nielsen MF, Brusgaard K, Tan Q, Andersen MS, Glintborg D, Gaster M. Genetic alterations within the DENND1A gene in patients with polycystic ovary syndrome (PCOS). PLoS One. 2013;8:e77186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franks S, Mason HD. Polycystic ovary syndrome: interaction of follicle stimulating hormone and polypeptide growth factors in oestradiol production by human granulosa cells. J Steroid Biochem Mol Biol. 1991;1-3:405–9.

    Article  Google Scholar 

  13. Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA. Abbott DH animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev. 2020;41(4):538–76.

    Article  Google Scholar 

  14. Tata B, El Houda MN, Barbotin A, Malone SA, Loyens A, Pigny P, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med. 2018;24(6):834–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gosden RG. Oocyte development and loss. Semin Reprod Med. 2013;31(6):393–8.

    Article  PubMed  Google Scholar 

  16. Hughesdon PE. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called “hyperthecosis”. Obstet Gynecol Surv. 1982;37(2):59–77.

    Article  CAS  PubMed  Google Scholar 

  17. Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet. 2003;362(9389):1017–21.

    Article  CAS  PubMed  Google Scholar 

  18. Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89(11):5321–7.

    Article  CAS  PubMed  Google Scholar 

  19. Wild S, Pierpoint T, Jacobs HS, McKeigue P. Long-term consequences of polycystic ovary syndrome: results of a 31-year follow-up study. Hum Fertil. 2000;3(2):101–5.

    Article  Google Scholar 

  20. Webber LJ, Stubbs SA, Stark J, Margara RA, Trew GH, Lavery SA, Hardy K, Franks S. Prolonged survival in culture of preantral follicles from polycystic ovaries. J Clin Endocrinol Metab. 2007;92(5):1975–8.

    Article  CAS  PubMed  Google Scholar 

  21. Rice S, Ojha K, Whitehead S, Mason H. Stage-specific expression of androgen receptor, follicle-stimulating hormone receptor and anti-Müllerian hormone type II receptor in single, isolated, human preantral follicles: relevance to polycystic ovaries. J Clin Endocrinol Metab. 2007;92(3):1034–40.

    Article  CAS  PubMed  Google Scholar 

  22. Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod. 2018;33(4):666–79.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Yan Z, et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell. 2018;72(6):1021–34, e4.

    Article  CAS  PubMed  Google Scholar 

  24. Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev. 2018;39(1):1–20.

    Article  PubMed  Google Scholar 

  25. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999;84(8):2951–6.

    Article  CAS  PubMed  Google Scholar 

  26. Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, et al. Premature ovarian failure in androgen receptor-deficient mice. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci U S A. 2006;103(1):224–9.

    Article  CAS  PubMed  Google Scholar 

  27. Luo W, Wiltbank MC. Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells. Biol Reprod. 2006;75(2):217–25.

    Article  CAS  PubMed  Google Scholar 

  28. Telfer EE, Zelinski MB. Ovarian follicle culture: advances and challenges for human and non-human primates. Fertil Steril. 2013;99(6):1523–33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qureshi AI, Nussey SS, Bano G, Musonda P, Whitehead SA, Mason HD. Testosterone selectively increases primary follicles in ovarian cortex grafted onto embryonic chick membranes: relevance to polycystic ovaries. Reproduction. 2008;136(2):187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sen A, Prizant H, Light A, Biswas A, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. PNAS. 2014;111(8):3008–13. https://doi.org/10.1073/pnas.1318978111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forsdike RA, Hardy K, Bull L, Stark J, Webber LJ, Stubbs S, et al. Disordered follicle development in ovaries of prenatally androgenized ewes. J Endocrinol. 2007;192(2):421–8.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson H, Fogel N, Grebe SK, Singh RJ, Taylor RL, Dunaif A. Infants of women with polycystic ovary syndrome have lower cord blood androstenedione and estradiol levels. J Clin Endocrinol Metab. 2010;95(5):2180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hornick JE, Duncan FE, Shea LD, Woodruff TK. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod. 2012;27(6):1801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shea LD, Woodruff TK, Shikanov A. Bioengineering the ovarian follicle microenvironment. Annu Rev Biomed Eng. 2014;11(16):29–52.

    Article  CAS  Google Scholar 

  35. Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab. 2007;92(11):4191–8.

    Article  CAS  PubMed  Google Scholar 

  36. Strauss JF III, McAllister JM. Margrit urbanek persistence pays off for PCOS gene prospectors. J Clin Endocrinol Metab. 2012;97(7):2286–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raja-Khan N, Kunselman AR, Demers LM, Ewens KG, Spielman RS, Legro RS. A variant in the fibrillin-3 gene is associated with TGF-β and inhibin B levels in women with polycystic ovary syndrome. Fertil Steril. 2010;94(7):2916–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sabatier L, Miosge N, Hubmacher D, Lin G, Davis EC. Reinhardt DP Fibrillin-3 expression in human development. Matrix Biol. 2011;30(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  39. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206.

    Article  CAS  PubMed  Google Scholar 

  40. Raja-Khan N, Urbanek M, Rodgers RJ, Legro RS. The role of TGF-beta in polycystic ovary syndrome. Reprod Sci. 2014;21(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  41. Prodoehl MJ, Hatzirodos N, Irving-Rodgers HF, Zhao ZZ, Painter JN, Hickey TE, et al. Genetic and gene expression analyses of the polycystic ovary syndrome candidate gene fibrillin-3 and other fibrillin family members in human ovaries. Mol Hum Reprod. 2009;15(12):829–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hatzirodos N, Bayne RA, Irving-Rodgers HF, Hummitzsch K, Sabatier L, Lee S, et al. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. FASEB J. 2011;25(7):2256–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu N, Azziz R, Goodarzi MO. Epigenetics in polycystic ovary syndrome: a pilot study of global DNA methylation. Fertil Steril. 2010;94(2):781–3.

    Article  CAS  PubMed  Google Scholar 

  44. Xu N, Kwon S, Abbott DH, Geller DH, Dumesic DA, Azziz R, et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS One. 2011;6(11):e27286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Müllerian hormone. Reproduction. 2002;124(5):601–9.

    Article  CAS  PubMed  Google Scholar 

  46. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142(11):4891–9.

    Article  CAS  PubMed  Google Scholar 

  47. Fallat ME, Cook C, Siow Y, Carrillo A, Marra M. Müllerian-inhibiting substance in follicular fluid and serum: a comparison of patients with tubal factor infertility, polycystic ovary syndrome, and endometriosis. Fertil Steril. 1997;67:962–5.

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Bishop CV, Lawson MS, Park BS, Xu F. Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum Reprod. 2016;31(7):1522–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu J, Xu F, Lawson MS, Tkachenko OY, Ting AY. Anti-Müllerian hormone is a survival factor and promotes the growth of rhesus macaque preantral follicles during matrix-free culture. Biol Reprod. 2018;98(2):197–207.

    Article  PubMed  Google Scholar 

  50. Stubbs SA, Hardy K, Da Silva-Buttkus P, Stark J, Webber LJ, Flanagan AM, et al. Anti-Müllerian hormone protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. J Clin Endocrinol Metab. 2005;90(10):5536–43.

    Article  CAS  PubMed  Google Scholar 

  51. Detti L, Fletcher MN, Saed GM, Sweatman TW, Uhlmann RA, Alberto Pappo A, et al. Xenotransplantation of pre-pubertal ovarian cortex and prevention of follicle depletion with anti-Müllerian hormone (AMH). J Assist Reprod Genet. 2018;35(10):1831–41.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kollmann M, Obermayer-Pietsch B, Lerchbaum E, Lang U, Herzog SA, Trummer C, et al. Androgen and anti-Mullerian hormone concentrations at term in newborns and their mothers with and without polycystic ovary syndrome. J Clin Med. 2019;8(11):1817.

    Article  CAS  PubMed Central  Google Scholar 

  53. Detti L, Christiansen ME, Francillon L, Ikuwezunma G, Diamond MP, Mari G, Tobiasz AM. Serum Anti-Müllerian hormone (AMH) in mothers with polycystic ovary syndrome (PCOS) and their term fetuses. Syst Biol Reprod Med. 2019;65:147–54.

    Article  CAS  PubMed  Google Scholar 

  54. Cimino I, Casoni F, Liu X, Messina A, Parkash J, Jamin SP, et al. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun. 2016;7:10055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Polson DW, Reed MJ, Franks S, Scanlon MJ, James VH. Serum 11 beta-hydroxyandrostenedione as an indicator of the source of excess androgen production in women with polycystic ovaries. J Clin Endocrinol Metab. 1988;66(5):946–50.

    Article  CAS  PubMed  Google Scholar 

  56. Gilling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79(4):1158–65.

    CAS  PubMed  Google Scholar 

  57. Gilling-Smith C, Story H, Rogers V, Franks S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin Endocrinol. 1997;47(1):93–9.

    Article  CAS  Google Scholar 

  58. Gharani N, Waterworth DM, Batty S, White D, Gilling-Smith C, Conway GS, et al. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet. 1997;6(3):397–402.

    Article  CAS  PubMed  Google Scholar 

  59. Nelson VL, Legro RS, Strauss JF 3rd, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13(6):946–57.

    Article  CAS  PubMed  Google Scholar 

  60. Wickenheisser JK, Nelson-Degrave VL, McAllister JM. Dysregulation of cytochrome P450 17alpha-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(3):1720–7.

    Article  CAS  PubMed  Google Scholar 

  61. Wickenheisser JK, Biegler JM, Nelson-Degrave VL, Legro RS, Strauss JF 3rd, McAllister JM. Cholesterol side-chain cleavage gene expression in theca cells: augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome. PLoS One. 2012;7(11):e48963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wood JR, Nelson VL, Ho C, Jansen E, Wang CY, Urbanek M, et al. The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem. 2003;278(29):26380–90.

    Article  CAS  PubMed  Google Scholar 

  63. McAllister JM, Legro RS, Modi BP, Strauss JF. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab. 2015;26(3):118–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marat AL, Dokainish H, McPherson PS. DENN domain proteins: regulators of Rab GTPases. J Biol Chem. 2011;286(16):13791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tee MK, Speek M, Legeza B, Modi B, Teves ME, McAllister JM, Strauss JF, Miller WL. Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2. Mol Cell Endocrinol. 2016;434:25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McAllister JM, Modi B, Miller BA, Biegler J, Bruggeman R, Legro RS, Strauss JF. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc Natl Acad Sci U S A. 2014;111(15):E1519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanamarlapudi V, Gordon UD, López BA. Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active. Reprod Biomed Online. 2016;32(6):635–41. https://doi.org/10.1016/j.rbmo.2016.03.003. PMID: 27061682.

    Article  CAS  PubMed  Google Scholar 

  68. Arroyo A, Laughlin GA, Morales AJ, Yen SSC. Inappropriate gonadotropin secretion in polycystic ovary syndrome: influence of adiposity. J Clin Endocrinol Metab. 1997;82:3728–33.

    CAS  PubMed  Google Scholar 

  69. Jakimiuk AJ, Weitsman SR, Navab A, Magoffin DA. Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overexpressed in thecal and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab. 2001;86(3):1318–23.

    CAS  PubMed  Google Scholar 

  70. Poretsky L, Kalin MF. The gonadotropic function of insulin. Endocr Rev. 1987;8(2):132–41.

    Article  CAS  PubMed  Google Scholar 

  71. Lin Y, Fridström M, Hillensjö T. Insulin stimulation of lactate accumulation in isolated human granulosa-luteal cells: a comparison between normal and polycystic ovaries. Hum Reprod. 1997;12(11):2469–72.

    Article  CAS  PubMed  Google Scholar 

  72. Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod. 2005;20(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  73. Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva RB, Davies TF, et al. Evidence for association of polycystic ovary syndrome in Caucasian women with a marker at the insulin receptor gene locus. J Clin Endocrinol Metab. 2001;86:446–9.

    Article  CAS  PubMed  Google Scholar 

  74. Bishop CV, Xu F, Xu J, et al. Western-style diet, with and without chronic androgen treatment, alters the number, structure, and function of small antral follicles in ovaries of young adult monkeys. Fertil Steril. 2016;105(4):1023–34.

    Article  CAS  PubMed  Google Scholar 

  75. Munir I, Yen HW, Geller DH, Torbati D, Bierden RM, Weitsman SR, Agarwal SK, Magoffin DA. Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology. 2004;145(1):175–83.

    Article  CAS  PubMed  Google Scholar 

  76. Sang Q, Yao Z, Wang H, Feng R, Wang H. Identification of MicroRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metabol. 2013;98(7):3068–79.

    Article  CAS  Google Scholar 

  77. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, Xing Q, Jin L, He L, Wu L, Wang L. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068–79.

    Article  CAS  PubMed  Google Scholar 

  78. Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, et al. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31(3):355–62.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen B, Xu P, Wang J, Zhang C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene. 2019;706:91–6.

    Article  CAS  PubMed  Google Scholar 

  80. McAllister JM, Han AX, Modi BP, Teves ME, Mavodza GR, Anderson ZL, et al. III miRNA profiling reveals miRNA-130b-3p mediates DENND1A variant 2 expression and androgen biosynthesis. Endocrinology. 2019;160(8):1964–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, et al. A very large proportion of young Danish women have polycystic ovaries: is a revision of the Rotterdam criteria needed? Hum Reprod. 2010;25(12):3117–22.

    Article  CAS  PubMed  Google Scholar 

  82. Dewailly D, Lujan ME, Carmina E, Cedars MI, Laven J, et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum Reprod Update. 2014;20(3):334–52.

    Article  CAS  PubMed  Google Scholar 

  83. Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ, et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol. 1992;36(1):105–11.

    Article  CAS  Google Scholar 

  84. Jarrett BY, Lujan ME. Impact of hypocaloric dietary intervention on ovulation in obese women with PCOS. Reproduction. 2016;2016:REP-16-0385.

    Google Scholar 

  85. Jarrett BY, Vanden Brink H, Oldfield AL, Lujan ME. Ultrasound characterization of disordered antral follicle development in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2020;105(11):e3847–61.

    Article  PubMed Central  Google Scholar 

  86. Walker K, Decherney AH, Saunders R. Menstrual dysfunction in PCOS. Clin Obstet Gynecol. 2021;64(1):119–25.

    Article  PubMed  Google Scholar 

  87. Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S. Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J Clin Endocrinol Metab. 1998;83(11):3984–91.

    CAS  PubMed  Google Scholar 

  88. Hillier SG. Current concepts of roles of follicle stimulating hormone and luteinising hormone in folliculogenesis. Hum Reprod. 1994;9:188–91.

    Article  CAS  PubMed  Google Scholar 

  89. Kristensen SG, Andersen CY. Cryopreservation of ovarian tissue: opportunities beyond fertility preservation and a positive view into the future. Front Endocrinol (Lausanne). 2018;28(9):347.

    Article  Google Scholar 

  90. Owens LA, Kristensen SG, Lerner A, Christopoulos G, Lavery S, Hanyaloglu AC, Hardy K, Andersen CY, Franks S. Gene expression in granulosa cells from small antral follicles from women with or without polycystic ovaries. J Clin Endocrinol Metab. 2019;104(12):6182–92.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wei D, Xie J, Yin B, Hao H, Song X, Liu Q, Zhang C, Sun Y. Significantly lengthened telomere in granulosa cells from women with polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2017;34(7):861–6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li Y, Deng B, Ouyang N, Yuan P, Zheng L, Wang W. Telomere length is short in PCOS and oral contraceptive does not affect the telomerase activity in granulosa cells of patients with PCOS. J Assist Reprod Genet. 2017;34(7):849–59.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mason HD, Willis DS, Beard RW, Winston RM, Margara R, Franks S. Estradiol production by granulosa cells of normal and polycystic ovaries: relationship to menstrual cycle history and concentrations of gonadotropins and sex steroids in follicular fluid. J Clin Endocrinol Metab. 1994;79(5):1355–60.

    CAS  PubMed  Google Scholar 

  94. Almahbobi G, Anderiesz C, Hutchinson P, McFarlane JR, Wood C, Trounson AO. Functional integrity of granulosa cells from polycystic ovaries. Clin Endocrinol. 1996;44(5):571–80.

    Article  CAS  Google Scholar 

  95. Coffler MS, Patel K, Dahan MH, Malcom PJ, Kawashima T, Deutsch R, et al. Evidence for abnormal granulosa cell responsiveness to follicle-stimulating hormone in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(4):1742–7.

    Article  CAS  PubMed  Google Scholar 

  96. Sudo S, Kudo M, Wada S, Sato O, Hsueh AJ, Fujimoto S. Genetic and functional analyses of polymorphisms in the human FSH receptor gene. Mol Hum Reprod. 2002;8(10):893–9.

    Article  CAS  PubMed  Google Scholar 

  97. Simoni M, Nieschlag E, Gromoll J. Isoforms and single nucleotide polymorphisms of the FSH receptor gene: implications for human reproduction. Hum Reprod Update. 2002;8(5):413–21.

    Article  CAS  PubMed  Google Scholar 

  98. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cassar S, Misso ML, Hopkins WG, Shaw CS, Teede HJ, Stepto NK. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum Reprod. 2016;31(11):2619–31.

    Article  CAS  PubMed  Google Scholar 

  100. Robinson S, Kiddy D, Gelding SV, Willis D, Niththyananthan R, Bush A, et al. The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries. Clin Endocrinol. 1993;39(3):351–5.

    Article  CAS  Google Scholar 

  101. Taylor R, Marsden PJ. Insulin sensitivity and fertility. Hum Fertil (Camb). 2000;3(1):65–9.

    Article  Google Scholar 

  102. Willis D, Mason H, Gilling-Smith C, Franks S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab. 1996;81(1):302–9.

    CAS  PubMed  Google Scholar 

  103. Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod. 1998;13(6):1502–5.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang D, Yang X, Li J, Yu J, Wu X. Effect of hyperinsulinaemia and insulin resistance on endocrine, metabolic and fertility outcomes in women with polycystic ovary syndrome undergoing ovulation induction. Clin Endocrinol. 2019;91(3):440–8.

    Article  CAS  Google Scholar 

  105. Rice S, Pellatt LJ, Bryan SJ, Whitehead SA, Mason HD. Action of metformin on the insulin-signaling pathway and on glucose transport in human granulosa cells. J Clin Endocrinol Metab. 2011;96(3):E427–35.

    Article  CAS  PubMed  Google Scholar 

  106. Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal. 2006;18(9):1351–9. https://doi.org/10.1016/j.cellsig.2006.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, et al. Anti-Müllerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96(5):1246–51.

    Article  CAS  PubMed  Google Scholar 

  108. Pellatt L, Rice S, Mason HD. Anti-Müllerian hormone and polycystic ovary syndrome: a mountain too high? Reproduction. 2010;139(5):825–33.

    Article  CAS  PubMed  Google Scholar 

  109. Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, Raine-Fenning N, Campbell BK, Yding AC. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19(8):519–27.

    Article  CAS  PubMed  Google Scholar 

  110. Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, et al. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab. 2007;92(1):240–5.

    Article  CAS  PubMed  Google Scholar 

  111. Dilaver N, Pellatt L, Jameson E, Ogunjimi M, Bano G, Homburg R, et al. The regulation and signalling of anti-Müllerian hormone in human granulosa cells: relevance to polycystic ovary syndrome. Hum Reprod. 2019;34(12):2467–79.

    CAS  PubMed  Google Scholar 

  112. Grynberg M, Pierre A, Rey R, Leclerc A, Arouche N, et al. Differential regulation of ovarian anti-Müllerian hormone (AMH) by estradiol through α- and β-estrogen receptors. J Clin Endocrinol Metab. 2012;97(9):1649–57.

    Article  CAS  Google Scholar 

  113. Pierre A, Taieb J, Giton F, Grynberg M, Touleimat S. Dysregulation of the anti-Müllerian hormone system by steroids in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017;102(11):3970–8.

    Article  PubMed  Google Scholar 

  114. Wang F, Niu WB, Kong HJ, Guo YH, Sun YP. The role of AMH and its receptor SNP in the pathogenesis of PCOS. Mol Cell Endocrinol. 2017;5(439):363–8.

    Article  CAS  Google Scholar 

  115. Josso N, di Clemente N, Gouédard L. Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol. 2001;179(1–2):25–32.

    Article  CAS  PubMed  Google Scholar 

  116. Attisano L. Signal transduction by the TGF-beta superfamily. Science. 2002;296(5573):1646–7.

    Article  CAS  PubMed  Google Scholar 

  117. Roberts LM, Hirokawa Y, Nachtigal MW, Ingraham HA. Paracrine-mediated apoptosis in reproductive tract development. Dev Biol. 1999;208(1):110–22.

    Article  CAS  PubMed  Google Scholar 

  118. Guibourdenche J, Lucidarme N, Chevenne D, Rigal O, Nicolas M, et al. Anti-Müllerian hormone levels in serum from human foetuses and children: pattern and clinical interest. Mol Cell Endocrinol. 2003;211(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

  119. Seckl JR, Walker BR. 11-Hydroxysteroid dehydrogenase type 1: a tissue-specific amplifier of glucocorticoid action. Endocrinology. 2001;142:1371–6.

    Article  CAS  PubMed  Google Scholar 

  120. Draper N, Stewart PM. 11-Hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol. 2005;186:251–71.

    Article  CAS  PubMed  Google Scholar 

  121. Stewart PM, Shackleton CH, Beastall GH, Edwards CR. 5-Reductase activity in polycystic ovary syndrome. Lancet. 1990;335:431–3.

    Article  CAS  PubMed  Google Scholar 

  122. Rodin A, Thakkar H, Taylor N, Clayton R. Hyperandrogenism in polycystic ovary syndrome. Evidence of dysregulation of 11-hydroxysteroid dehydrogenase. N Engl J Med. 1994;330:460–5.

    Article  CAS  PubMed  Google Scholar 

  123. Tsilchorozidou T, Honour JW, Conway GS. Altered cortisol metabolism in polycystic ovary syndrome: insulin enhances 5-reduction but not the elevated adrenal steroid production rates. J Clin Endocrinol Metab. 2003;88:5907–13.

    Article  CAS  PubMed  Google Scholar 

  124. Michael AE, Evagelatou M, Norgate DP, et al. Isoforms of 11- hydroxysteroid dehydrogenase in human granulosa-lutein cells. Mol Cell Endocrinol. 1997;132:43–52.

    Article  CAS  PubMed  Google Scholar 

  125. Michael AE, Glenn C, Wood PJ, Webb RJ, Pellatt L, Helen D. Mason ovarian 11-hydroxysteroid dehydrogenase (11HSD) activity is suppressed in women with anovulatory polycystic ovary syndrome (PCOS): apparent role for ovarian androgens JCEM 98 2013.

    Google Scholar 

  126. Sunak N, Green DF, Abeydeera LR, Thurston LM, Michael AE. Implication of cortisol and 11-hydroxysteroid dehydrogenase (11HSD) enzymes in the development of porcine (Sus scrofa domestica) ovarian follicles and cysts. Reproduction. 2007;133:1149–58.

    Article  CAS  PubMed  Google Scholar 

  127. Thurston LM, Abayasekara DR, Michael AE. 11-Hydroxysteroid dehydrogenase expression and activities in bovine granulosa cells and corpora lutea implicate corticosteroids in bovine ovarian physiology. J Endocrinol. 2007;193:299–310.

    Article  CAS  PubMed  Google Scholar 

  128. Hillier SG, Purohit A, Reichert LE Jr. Control of granulosa cell lactate production by follicle-stimulating hormone and androgen. Endocrinology. 1985;116(3):1163–7.

    Article  CAS  PubMed  Google Scholar 

  129. Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool. 1985;234(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  130. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64(4):992–1006.

    Article  CAS  PubMed  Google Scholar 

  131. Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol. 1995;167(2):502–12.

    Article  CAS  PubMed  Google Scholar 

  132. Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod. 2005;73(2):351–7.

    Article  CAS  PubMed  Google Scholar 

  133. Leese HJ, Lenton EA. Glucose and lactate in human follicular fluid: concentrations and interrelationships. Hum Reprod. 1990;5(8):915–9.

    Article  CAS  PubMed  Google Scholar 

  134. Nandi S, Girish Kumar V, Manjunatha BM, Ramesh HS, Gupta PS. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology. 2008;69(2):186–96.

    Article  CAS  PubMed  Google Scholar 

  135. Rajska A, Buszewska-Forajta M, Rachoń D, Markuszewski MJ. Metabolomic insight into polycystic ovary syndrome-an overview. Int J Mol Sci. 2020;21(14):4853. https://doi.org/10.3390/ijms21144853. PMID: 32659951; PMCID: PMC7402307

    Article  CAS  PubMed Central  Google Scholar 

  136. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267–77.

    Article  CAS  PubMed  Google Scholar 

  137. Fedorcsák P, Storeng R, Dale PO, Tanbo T, Abyholm T. Impaired insulin action on granulosa-lutein cells in women with polycystic ovary syndrome and insulin resistance. Gynecol Endocrinol. 2000;14(5):327–36.

    Article  PubMed  Google Scholar 

  138. Naderpoor N, Shorakae S, de Courten B, Misso ML, Moran LJ, Teede HJ. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Hum Reprod Update. 2015;21(5):560–74. https://doi.org/10.1093/humupd/dmv025.

    Article  CAS  PubMed  Google Scholar 

  139. Harris SE, Maruthini D, Tang T, Balen AH, Picton HM. Metabolism and karyotype analysis of oocytes from patients with polycystic ovary syndrome. Hum Reprod. 2010;25(9):2305–15.

    Article  CAS  PubMed  Google Scholar 

  140. Ludwig M, Finas DF, al-Hasani S, Diedrich K, Ortmann O. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod. 1999;14(2):354–8.

    Article  CAS  PubMed  Google Scholar 

  141. Wang Q, Tang SB, Song XB, Deng TF, Zhang TT, Yin S, Luo SM, Shen W, Zhang CL, Ge ZJ. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod. 2018;33(3):474–81.

    Article  CAS  PubMed  Google Scholar 

  142. Wood JR, Dumesic DA, Abbott DH, Strauss JF 3rd. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92(2):705–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Rice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mason, H.D., Dilaver, N., Rice, S. (2022). Ovarian Dysfunction in Polycystic Ovary Syndrome (PCOS). In: Pal, L., Seifer, D.B. (eds) Polycystic Ovary Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-92589-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92589-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92588-8

  • Online ISBN: 978-3-030-92589-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics