Skip to main content

Advertisement

Log in

Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil

  • Clinical Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trilles L, Lazera Mdos S, Wanke B, Oliveira RV, Barbosa GG, Nishikawa MM et al (2008) Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil. Mem Inst Oswaldo Cruz 103(5):455–462. https://doi.org/10.1590/s0074-02762008000500008

    Article  CAS  PubMed  Google Scholar 

  2. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17(8):873–881. https://doi.org/10.1016/S1473-3099(17)30243-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Júnior JL LV, Júnior P, Nicola AM, Santos M (2017) Implementation of the Brazil Cryptococcosis network in the federal district - RCB-DF. J Med Health Brasília 6(2):151–3:2238–5339

  4. Leimann BC, Koifman RJ (2008) Cryptococcal meningitis in Rio de Janeiro State, Brazil, 1994–2004. Cad Saude Publica 24(11):2582–2592. https://doi.org/10.1590/s0102-311x2008001100013

    Article  PubMed  Google Scholar 

  5. Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S et al (2005) Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437(7063):1360–1364. https://doi.org/10.1038/nature04220

    Article  CAS  PubMed  Google Scholar 

  6. May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K (2016) Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol 14(2):106–117. https://doi.org/10.1038/nrmicro.2015.6

    Article  CAS  PubMed  Google Scholar 

  7. Rhodes J, Desjardins CA, Sykes SM, Beale MA, Vanhove M, Sakthikumar S et al (2017) Tracing genetic exchange and biogeography of Cryptococcus neoformans var. grubii at the global population level. Genetics 207(1):327–346. https://doi.org/10.1534/genetics.117.203836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bielska E, May RC (2016) What makes Cryptococcus gattii a pathogen? FEMS Yeast Res 16(1):fov106. https://doi.org/10.1093/femsyr/fov106

    Article  CAS  PubMed  Google Scholar 

  9. Alanio A, Vernel-Pauillac F, Sturny-Leclere A, Dromer F (2015) Cryptococcus neoformans host adaptation: toward biological evidence of dormancy. mBio 6(2). https://doi.org/10.1128/mBio.02580-14

  10. Saha DC, Goldman DL, Shao X, Casadevall A, Husain S, Limaye AP et al (2007) Serologic evidence for reactivation of cryptococcosis in solid-organ transplant recipients. Clin Vaccine Immunol 14(12):1550–1554. https://doi.org/10.1128/CVI.00242-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nunes JO, Tsujisaki RAS, Nunes MO, Lima GME, Paniago AMM, Pontes E et al (2018) Cryptococcal meningitis epidemiology: 17 years of experience in a State of the Brazilian Pantanal. Rev Soc Bras Med Trop 51(4):485–492. https://doi.org/10.1590/0037-8682-0050-2018

    Article  PubMed  Google Scholar 

  12. Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM et al (2009) Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS ONE 4(6):e5862. https://doi.org/10.1371/journal.pone.0005862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Litvintseva AP, Thakur R, Vilgalys R, Mitchell TG (2006) Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172(4):2223–2238. https://doi.org/10.1534/genetics.105.046672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cogliati M (2013) Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica (Cairo) 2013:675213. https://doi.org/10.1155/2013/675213

    Article  CAS  Google Scholar 

  15. Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB et al (2017) Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the Cryptococcus genus. mSphere 2(4). https://doi.org/10.1128/mSphere.00238-17

  16. Kwon-Chung KJ, Varma A (2006) Do major species concepts support one, two or more species within Cryptococcus neoformans? FEMS Yeast Res 6(4):574–587. https://doi.org/10.1111/j.1567-1364.2006.00088.x

    Article  CAS  PubMed  Google Scholar 

  17. Abegg MA, Cella FL, Faganello J, Valente P, Schrank A, Vainstein MH (2006) Cryptococcus neoformans and Cryptococcus gattii isolated from the excreta of psittaciformes in a southern Brazilian zoological garden. Mycopathologia 161(2):83–91. https://doi.org/10.1007/s11046-005-0186-z

    Article  PubMed  Google Scholar 

  18. Kamari A, Sepahvand A, Mohammadi R (2017) Isolation and molecular characterization of Cryptococcus species isolated from pigeon nests and Eucalyptus trees. Curr Med Mycol 3(2):20–25. https://doi.org/10.29252/cmm.3.2.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cogliati M, D'Amicis R, Zani A, Montagna MT, Caggiano G, De Giglio O et al (2016) Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin. FEMS Yeast Res 16(4). https://doi.org/10.1093/femsyr/fow045

  20. Anzai MC, Lazera Mdos S, Wanke B, Trilles L, Dutra V, de Paula DA et al (2014) Cryptococcus gattii VGII in a Plathymenia reticulata hollow in Cuiaba, Mato Grosso, Brazil. Mycoses 57(7):414–418. https://doi.org/10.1111/myc.12177

    Article  PubMed  Google Scholar 

  21. Khayhan K, Hagen F, Norkaew T, Puengchan T, Boekhout T, Sriburee P (2017) Isolation of Cryptococcus gattii from a Castanopsis argyrophylla tree hollow (Mai-Kaw), Chiang Mai, Thailand. Mycopathologia 182(3–4):365–370. https://doi.org/10.1007/s11046-016-0067-7

    Article  CAS  PubMed  Google Scholar 

  22. Trilles L, Lazera M, Wanke B, Theelen B, Boekhout T (2003) Genetic characterization of environmental isolates of the Cryptococcus neoformans species complex from Brazil. Med Mycol 41(5):383–390. https://doi.org/10.1080/1369378031000137206

    Article  CAS  PubMed  Google Scholar 

  23. Lazera MS, Cavalcanti MA, Trilles L, Nishikawa MM, Wanke B (1998) Cryptococcus neoformans var. gattii–evidence for a natural habitat related to decaying wood in a pottery tree hollow. Med Mycol 36(2):119–122

    CAS  PubMed  Google Scholar 

  24. Lazera MS, Salmito Cavalcanti MA, Londero AT, Trilles L, Nishikawa MM, Wanke B (2000) Possible primary ecological niche of Cryptococcus neoformans. Med Mycol 38(5):379–383. https://doi.org/10.1080/mmy.38.5.379.383

    Article  CAS  PubMed  Google Scholar 

  25. Alves GS, Freire AK, BentesAdos S, Pinheiro JF, de Souza JV, Wanke B et al (2016) Molecular typing of environmental Cryptococcus neoformans/C. gattii species complex isolates from Manaus, Amazonas, Beazil. Mycoses 59(8):509–515. https://doi.org/10.1111/myc.12499

    Article  CAS  PubMed  Google Scholar 

  26. Filiu WF, Wanke B, Aguena SM, Vilela VO, Macedo RC, Lazera M (2002) Avian habitats as sources of Cryptococcus neoformans in the city of Campo Grande, Mato Grosso do Sul, Brazil. Rev Soc Bras Med Trop 35(6):591–595. https://doi.org/10.1590/s0037-86822002000600008

    Article  PubMed  Google Scholar 

  27. Costa Sdo P, Lazera Mdos S, Santos WR, Morales BP, Bezerra CC, Nishikawa MM et al (2009) First isolation of Cryptococcus gattii molecular type VGII and Cryptococcus neoformans molecular type VNI from environmental sources in the city of Belem, Para, Brazil. Mem Inst Oswaldo Cruz 104(4):662–664. https://doi.org/10.1590/s0074-02762009000400023

    Article  PubMed  Google Scholar 

  28. Montenegro H, Paula CR (2000) Environmental isolation of Cryptococcus neoformans var. gattii and C. neoformans var. neoformans in the city of Sao Paulo, Brazil. Med Mycol 38(5):385–390. https://doi.org/10.1080/mmy.38.5.385.390

    Article  CAS  PubMed  Google Scholar 

  29. Brito-Santos F, Barbosa GG, Trilles L, Nishikawa MM, Wanke B, Meyer W et al (2015) Environmental isolation of Cryptococcus gattii VGII from indoor dust from typical wooden houses in the deep Amazonas of the Rio Negro basin. PLoS ONE 10(2):e0115866. https://doi.org/10.1371/journal.pone.0115866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andrade-Silva LE, Ferreira-Paim K, Ferreira TB, Vilas-Boas A, Mora DJ, Manzato VM et al (2018) Genotypic analysis of clinical and environmental Cryptococcus neoformans isolates from Brazil reveals the presence of VNB isolates and a correlation with biological factors. PLoS ONE 13(3):e0193237. https://doi.org/10.1371/journal.pone.0193237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spina-Tensini T, Muro MD, Queiroz-Telles F, Strozzi I, Moraes ST, Petterle RR et al (2017) Geographic distribution of patients affected by Cryptococcus neoformans/Cryptococcus gattii species complexes meningitis, pigeon and tree populations in Southern Brazil. Mycoses 60(1):51–58. https://doi.org/10.1111/myc.12550

    Article  PubMed  Google Scholar 

  32. Montoya MC, Magwene PM, Perfect JR (2021) Associations between Cryptococcus genotypes, phenotypes, and clinical parameters of human disease: a review. J Fungi (Basel) 7(4). https://doi.org/10.3390/jof7040260

  33. Aguiar P, Pedroso RDS, Borges AS, Moreira TA, Araujo LB, Roder D (2017) The epidemiology of cryptococcosis and the characterization of Cryptococcus neoformans isolated in a Brazilian University Hospital. Rev Inst Med Trop Sao Paulo 59:e13. https://doi.org/10.1590/S1678-9946201759013

    Article  PubMed  PubMed Central  Google Scholar 

  34. Favalessa OC, Lazera Mdos S, Wanke B, Trilles L, Takahara DT, Tadano T et al (2014) Fatal Cryptococcus gattii genotype AFLP6/VGII infection in a HIV-negative patient: case report and a literature review. Mycoses 57(10):639–643. https://doi.org/10.1111/myc.12210

    Article  CAS  PubMed  Google Scholar 

  35. Figueiredo TP, Lucas RC, Cazzaniga RA, Franca CN, Segato F, Taglialegna R et al (2016) Antifungal susceptibility testing and genotyping characterization of Cryptococcus neoformans and gattii isolates from hiv-infected patients of Ribeirao Preto, São Paulo, Brazil. Rev Inst Med Trop Sao Paulo 58:69. https://doi.org/10.1590/S1678-9946201658069

    Article  PubMed  PubMed Central  Google Scholar 

  36. Firacative C, Lizarazo J, Illnait-Zaragozi MT, Castaneda E, Latin American Cryptococcal Study G (2018) The status of cryptococcosis in Latin America. Mem Inst Oswaldo Cruz 113(7):e170554. https://doi.org/10.1590/0074-02760170554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Freire AK, dos Santos BA, de Lima SI, Matsuura AB, Ogusku MM, Salem JI et al (2012) Molecular characterisation of the causative agents of Cryptococcosis in patients of a tertiary healthcare facility in the state of Amazonas-Brazil. Mycoses 55(3):e145–e150. https://doi.org/10.1111/j.1439-0507.2012.02173.x

    Article  PubMed  Google Scholar 

  38. Herkert PF, Meis JF, Lucca Oliveira de Salvador G, Rodrigues Gomes R, Aparecida Vicente V, Dominguez Muro M et al (2018) Molecular characterization and antifungal susceptibility testing of Cryptococcus neoformans sensu stricto from southern Brazil. J Med Microbiol 67(4):560–569. https://doi.org/10.1099/jmm.0.000698

    Article  CAS  PubMed  Google Scholar 

  39. Igreja RP, Lazera Mdos S, Wanke B, Galhardo MC, Kidd SE, Meyer W (2004) Molecular epidemiology of Cryptococcus neoformans isolates from AIDS patients of the Brazilian city, Rio de Janeiro. Med Mycol 42(3):229–238. https://doi.org/10.1080/13693780310001644743

    Article  CAS  PubMed  Google Scholar 

  40. Da Silva BK, Freire AK, Bentes Ados S, Sampaio Ide L, Santos LO, Dos Santos MS et al (2012) Characterization of clinical isolates of the Cryptococcus neoformans-Cryptococcus gattii species complex from the Amazonas State in Brazil. Rev Iberoam Micol 29(1):40–43. https://doi.org/10.1016/j.riam.2011.05.003

    Article  PubMed  Google Scholar 

  41. Martins LM, Wanke B, Lazera Mdos S, Trilles L, Barbosa GG, Macedo RC et al (2011) Genotypes of Cryptococcus neoformans and Cryptococcus gattii as agents of endemic cryptococcosis in Teresina, Piaui (northeastern Brazil). Mem Inst Oswaldo Cruz 106(6):725–730. https://doi.org/10.1590/s0074-02762011000600012

    Article  CAS  PubMed  Google Scholar 

  42. Matos CS, de Souza Andrade A, Oliveira NS, Barros TF (2012) Microbiological characteristics of clinical isolates of Cryptococcus spp. in Bahia, Brazil: molecular types and antifungal susceptibilities. Eur J Clin Microbiol Infect Dis 31(7):1647–1652. https://doi.org/10.1007/s10096-011-1488-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsumoto MT, Fusco-Almeida AM, Baeza LC, Melhem Mde S, Medes-Giannini MJ (2007) Genotyping, serotyping and determination of mating-type of Cryptococcus neoformans clinical isolates from Sao Paulo State, Brazil. Rev Inst Med Trop Sao Paulo 49(1):41–47. https://doi.org/10.1590/s0036-46652007000100008

    Article  PubMed  Google Scholar 

  44. Mora DJ, Pedrosa AL, Rodrigues V, Leite Maffei CM, Trilles L, Dos Santos LM et al (2010) Genotype and mating type distribution within clinical Cryptococcus neoformans and Cryptococcus gattii isolates from patients with cryptococcal meningitis in Uberaba, Minas Gerais. Brazil Med Mycol 48(4):561–569. https://doi.org/10.3109/13693780903358317

    Article  CAS  PubMed  Google Scholar 

  45. Ponzio V, Chen Y, Rodrigues AM, Tenor JL, Toffaletti DL, Medina-Pestana JO et al (2019) Genotypic diversity and clinical outcome of cryptococcosis in renal transplant recipients in Brazil. Emerg Microbes Infect 8(1):119–129. https://doi.org/10.1080/22221751.2018.1562849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santos WR, Meyer W, Wanke B, Costa SP, Trilles L, Nascimento JL et al (2008) Primary endemic Cryptococcosis gattii by molecular type VGII in the state of Para, Brazil. Mem Inst Oswaldo Cruz 103(8):813–818. https://doi.org/10.1590/s0074-02762008000800012

    Article  PubMed  Google Scholar 

  47. Tsujisaki RA, Paniago AM, Lima Junior MS, Alencar Dde S, Spositto FL, Nunes Mde O et al (2013) First molecular typing of cryptococcemia-causing cryptococcus in central-west Brazil. Mycopathologia 176(3–4):267–272. https://doi.org/10.1007/s11046-013-9676-6

    Article  CAS  PubMed  Google Scholar 

  48. Souto AC, Bonfietti LX, Ferreira-Paim K, Trilles L, Martins M, Ribeiro-Alves M et al (2016) Population genetic analysis reveals a high genetic diversity in the Brazilian Cryptococcus gattii VGII population and shifts the global origin from the Amazon rainforest to the semi-arid desert in the Northeast of Brazil. PLoS Negl Trop Dis 10(8):e0004885. https://doi.org/10.1371/journal.pntd.0004885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vilas-Boas AM, Andrade-Silva LE, Ferreira-Paim K, Mora DJ, Ferreira TB, Santos DA et al (2020) High genetic variability of clinical and environmental Cryptococcus gattii isolates from Brazil. Med Mycol 58(8):1126–1137. https://doi.org/10.1093/mmy/myaa019

    Article  CAS  PubMed  Google Scholar 

  50. Villena SN, Pinheiro RO, Pinheiro CS, Nunes MP, Takiya CM, DosReis GA et al (2008) Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell Microbiol 10(6):1274–1285. https://doi.org/10.1111/j.1462-5822.2008.01125.x

    Article  CAS  PubMed  Google Scholar 

  51. Wirth F, Azevedo MI, Goldani LZ (2018) Molecular types of Cryptococcus species isolated from patients with cryptococcal meningitis in a Brazilian tertiary care hospital. Braz J Infect Dis 22(6):495–498. https://doi.org/10.1016/j.bjid.2018.11.002

    Article  PubMed  Google Scholar 

  52. Grizante Bariao PH, Tonani L, Cocio TA, Martinez R, Nascimento E, von Zeska Kress MR (2020) Molecular typing, in vitro susceptibility and virulence of Cryptococcus neoformans/Cryptococcus gattii species complex clinical isolates from south-eastern Brazil. Mycoses 63(12):1341–1351. https://doi.org/10.1111/myc.13174

    Article  CAS  PubMed  Google Scholar 

  53. Souza LK, Souza Junior AH, Costa CR, Faganello J, Vainstein MH, Chagas AL et al (2010) Molecular typing and antifungal susceptibility of clinical and environmental Cryptococcus neoformans species complex isolates in Goiania, Brazil. Mycoses 53(1):62–67. https://doi.org/10.1111/j.1439-0507.2008.01662.x

    Article  CAS  PubMed  Google Scholar 

  54. Boekhout T, Theelen B, Diaz M, Fell JW, Hop WCJ, Abeln ECA et al (2001) Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology (Reading) 147(Pt 4):891–907. https://doi.org/10.1099/00221287-147-4-891

    Article  CAS  Google Scholar 

  55. Meyer W, Castaneda A, Jackson S, Huynh M, Castaneda E, IberoAmericanCryptococcal Study G (2003) Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis 9(2):189–195. https://doi.org/10.3201/eid0902.020246

    Article  PubMed  PubMed Central  Google Scholar 

  56. Medeiros Ribeiro A, Silva LK, SilveiraSchrank I, Schrank A, Meyer W, Henning Vainstein M (2006) Isolation of Cryptococcus neoformans var. neoformans serotype D from Eucalypts in South Brazil. Med Mycol 44(8):707–713. https://doi.org/10.1080/13693780600917209

    Article  CAS  PubMed  Google Scholar 

  57. Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I et al (2019) Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep 9(1):7493. https://doi.org/10.1038/s41598-019-43941-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colombo TE, Soares MM, D’Avilla SC, Nogueira MC, de Almeida MT (2012) Identification of fungal diseases at necropsy. Pathol Res Pract 208(9):549–552. https://doi.org/10.1016/j.prp.2012.06.004

    Article  PubMed  Google Scholar 

  59. Torres RG, Etchebehere RM, Adad SJ, Micheletti AR, Ribeiro BM, Silva LE et al (2016) Cryptococcosis in acquired immunodeficiency syndrome patients clinically confirmed and/or diagnosed at necropsy in a teaching hospital in Brazil. Am J Trop Med Hyg 95(4):781–785. https://doi.org/10.4269/ajtmh.16-0148

    Article  PubMed  Google Scholar 

  60. de Azambuja AZ, Wissmann Neto G, Watte G, Antoniolli L, Goldani LZ (2018) Cryptococcal meningitis: a retrospective cohort of a Brazilian reference hospital in the post-HAART era of universal access. Can J Infect Dis Med Microbiol 2018:6512468. https://doi.org/10.1155/2018/6512468

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vechi HT, Theodoro RC, de Oliveira AL, Gomes R, Soares RDA, Freire MG et al (2019) Invasive fungal infection by Cryptococcus neoformans var. grubii with bone marrow and meningeal involvement in a HIV-infected patient: a case report. BMC Infect Dis 19(1):220. https://doi.org/10.1186/s12879-019-3831-8

    Article  PubMed  PubMed Central  Google Scholar 

  62. de Oliveira L, Martins Mdos A, Vidal JE, Szeszs MW, Pappalardo MC, Melhem MS (2015) Report of filamentous forms in a mating type VNI clinical sequential isolates of Cryptococcus neoformans from an HIV virus-infected patient. Med Mycol Case Rep 7:4–7. https://doi.org/10.1016/j.mmcr.2014.11.002

    Article  PubMed  Google Scholar 

  63. de Carvalho SR, Schiave LA, Dos Santos Quaglio AS, de Gaitani CM, Martinez R (2017) Fluconazole non-susceptible Cryptococcus neoformans, relapsing/refractory Cryptococcosis and long-term use of liposomal amphotericin B in an AIDS patient. Mycopathologia 182(9–10):855–861. https://doi.org/10.1007/s11046-017-0165-1

    Article  CAS  Google Scholar 

  64. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ et al (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 50(3):291–322. https://doi.org/10.1086/649858

    Article  PubMed  Google Scholar 

  65. Hamerschlak N, Pasternak J, Wagner J, Perini GF (2012) Not all that shines is cancer: pulmonary cryptococcosis mimicking lymphoma in [(18)] F fluoro-2-deoxy-D-glucose positron emission tomography. Einstein (Sao Paulo) 10(4):502–504. https://doi.org/10.1590/s1679-45082012000400018

    Article  Google Scholar 

  66. Amaral DM, Rocha RC, Carneiro LE, Vasconcelos DM, Abreu MA (2016) Disseminated cryptococcosis manifested as a single tumor in an immunocompetent patient, similar to the cutaneous primary forms. An Bras Dermatol 91(5 suppl 1):29–31. https://doi.org/10.1590/abd1806-4841.20164582

    Article  PubMed  PubMed Central  Google Scholar 

  67. Moretti de Lima A, Rodrigues MM, Santiago Reis CM (2018) Cutaneous Cryptococcosis mimicking leishmaniasis. Am J Trop Med Hyg 98(1):3–4. https://doi.org/10.4269/ajtmh.17-0170

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dias Lopes MR, Roper GB, Dias Lopes FA, Moreira Neto LJ, Svidzinski TIE, Grava S (2019) Mediastinal cryptococcosis simulating thyroid neoplasia in immunocompetent patient with prior diagnosis and treatment for COPD. Med Mycol Case Rep 24:93–96. https://doi.org/10.1016/j.mmcr.2019.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  69. Neves RP, Lima Neto RG, Leite MC, Silva VK, Santos Fde A, Macedo DP (2015) Cryptococcus laurentii fungaemia in a cervical cancer patient. Braz J Infect Dis 19(6):660–663. https://doi.org/10.1016/j.bjid.2015.06.014

    Article  PubMed  Google Scholar 

  70. Pappas PG (2013) Cryptococcal infections in non-HIV-infected patients. Trans Am Clin Climatol Assoc 124:61–79

    PubMed  PubMed Central  Google Scholar 

  71. Lomes NR, Melhem MS, Szeszs MW, Martins Mdos A, Buccheri R (2016) Cryptococcosis in non-HIV/non-transplant patients: a Brazilian case series. Med Mycol 54(7):669–676. https://doi.org/10.1093/mmy/myw021

    Article  PubMed  Google Scholar 

  72. Barbosa De Araujo Neto F, Corona De Godoy Bueno C, Tambelini Gomes L, Alejandra Ortiz Navas D, Wanderley M, Gallotti Borges Carneiro S et al (2019) The diagnostic challenge of an infrequent spectrum of Cryptococcus infection. Case Rep Radiol 2019:5970648. https://doi.org/10.1155/2019/5970648

    Article  PubMed  PubMed Central  Google Scholar 

  73. Haddad N, Cavallaro MC, Lopes MP, Fernandez JM, Laborda LS, Otoch JP et al (2015) Pulmonary cryptococcoma: a rare and challenging diagnosis in immunocompetent patients. Autops Case Rep 5(2):35–40. https://doi.org/10.4322/acr.2015.004

    Article  PubMed  PubMed Central  Google Scholar 

  74. Oliveira Fde M, Severo CB, Guazzelli LS, Severo LC (2007) Cryptococcus gattii fungemia: report of a case with lung and brain lesions mimicking radiological features of malignancy. Rev Inst Med Trop Sao Paulo 49(4):263–265. https://doi.org/10.1590/s0036-46652007000400014

    Article  PubMed  Google Scholar 

  75. Cavalcante-Filho JRM, Alves-Filho FWP, Araujo GB, Braga-Neto P, Ribeiro EML (2018) Kinsbourne syndrome associated with cryptococcosis infection. Parkinsonism Relat Disord 47:86–87. https://doi.org/10.1016/j.parkreldis.2017.11.005

    Article  PubMed  Google Scholar 

  76. Pedroso JL, Barsottini OG (2012) Acute parkinsonism in Cryptococcus gattii meningoencephalitis: extensive lesions in basal ganglia. Mov Disord 27(11):1372. https://doi.org/10.1002/mds.25074

    Article  PubMed  Google Scholar 

  77. Hayashida MZ, Seque CA, Pasin VP, Enokihara M, Porro AM (2017) Disseminated cryptococcosis with skin lesions: report of a case series. An Bras Dermatol 92(5 Suppl 1):69–72. https://doi.org/10.1590/abd1806-4841.20176343

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dora JM, Kelbert S, Deutschendorf C, Cunha VS, Aquino VR, Santos RP et al (2006) Cutaneous cryptococccosis due to Cryptococcus gattii in immunocompetent hosts: case report and review. Mycopathologia 161(4):235–238. https://doi.org/10.1007/s11046-006-0277-5

    Article  PubMed  Google Scholar 

  79. Marques SA, Bastazini I Jr, Martins AL, Barreto JA, Barbieri D’Elia MP, Lastoria JC et al (2012) Primary cutaneous cryptococcosis in Brazil: report of 11 cases in immunocompetent and immunosuppressed patients. Int J Dermatol 51(7):780–784. https://doi.org/10.1111/j.1365-4632.2011.05298.x

    Article  PubMed  Google Scholar 

  80. Corrêa MdPSC, Oliveira EC, Duarte RRBS, Pardal PPO, Oliveira FdM, Severo LC (1999) Criptococose em crianças no Estado do Pará, Brasil. J Revista da Sociedade Brasileira de Medicina Tropical 32:505–8

  81. Soares BM, Santos DA, Kohler LM, da Costa CG, de Carvalho IR, dos Anjos MM et al (2008) Cerebral infection caused by Cryptococcus gattii: a case report and antifungal susceptibility testing. Rev Iberoam Micol 25(4):242–245

    Article  Google Scholar 

  82. Chen SC, Meyer W, Sorrell TC (2014) Cryptococcus gattii infections. Clin Microbiol Rev 27(4):980–1024. https://doi.org/10.1128/CMR.00126-13

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fernandes KE, Brockway A, Haverkamp M, Cuomo CA, van Ogtrop F, Perfect JR et al (2018) Phenotypic variability correlates with clinical outcome in cryptococcus isolates obtained from Botswanan HIV/AIDS patients. mBio 9(5). https://doi.org/10.1128/mBio.02016-18

  84. Beale MA, Sabiiti W, Robertson EJ, Fuentes-Cabrejo KM, O’Hanlon SJ, Jarvis JN et al (2015) Genotypic diversity is associated with clinical outcome and phenotype in cryptococcal meningitis across Southern Africa. PLoS Negl Trop Dis 9(6):e0003847. https://doi.org/10.1371/journal.pntd.0003847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A, Cordoba S et al (2012) Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 56(11):5898–5906. https://doi.org/10.1128/AAC.01115-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beardsley J, Sorrell TC, Chen SC (2019) Central nervous system cryptococcal infections in non-HIV infected patients. J Fungi (Basel) 5(3). https://doi.org/10.3390/jof5030071

  87. Moretti ML, Resende MR, Lazera MS, Colombo AL, Shikanai-Yasuda MA (2008) Guidelines in cryptococcosis–2008. Rev Soc Bras Med Trop 41(5):524–544. https://doi.org/10.1590/s0037-86822008000500022

    Article  PubMed  Google Scholar 

  88. Cowen LE (2008) The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6(3):187–198. https://doi.org/10.1038/nrmicro1835

    Article  CAS  PubMed  Google Scholar 

  89. Ministério da Saúde Brasil (2018). Protocolo Clínico e Diretrizes Terapêuticas para Manejo da Infecção pelo HIV em Crianças e Adolescentes Brasília: Ministério da Saúde; 2018

  90. Molloy SF, Kanyama C, Heyderman RS, Loyse A, Kouanfack C, Chanda D et al (2018) Antifungal combinations for treatment of Cryptococcal meningitis in Africa. 378(11):1004–17. https://doi.org/10.1056/NEJMoa1710922

  91. WHO (2018). Guidelines for the diagnosis, prevention and management of Cryptococcal disease in HIV-infected adults, adolescents and children: supplement to the 2016 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: World Health Organization; 2018

  92. Jarvis JN, Leeme TB, Molefi M, Chofle AA, Bidwell G, Tsholo K et al (2019) Short-course high-dose liposomal amphotericin B for human immunodeficiency virus-associated cryptococcal meningitis: a phase 2 randomized controlled trial. Clin Infect Dis 68(3):393–401. https://doi.org/10.1093/cid/ciy515

    Article  CAS  PubMed  Google Scholar 

  93. Vidal JE, Penalva de Oliveira AC, Dauar RF, Boulware DR (2013) Strategies to reduce mortality and morbidity due to AIDS-related cryptococcal meningitis in Latin America. Braz J Infect Dis 17(3):353–362. https://doi.org/10.1016/j.bjid.2012.10.020

    Article  PubMed  Google Scholar 

  94. Tuon FF, Florencio KL, Rocha JL (2019) Burden of acute kidney injury in HIV patients under deoxycholate amphotericin B therapy for cryptococcal meningitis and cost-minimization analysis of amphotericin B lipid complex. Med Mycol 57(3):265–269. https://doi.org/10.1093/mmy/myy025

    Article  PubMed  Google Scholar 

  95. Lawrence DS, Boyer-Chammard T, Jarvis JN (2019) Emerging concepts in HIV-associated cryptococcal meningitis. Curr Opin Infect Dis 32(1):16–23. https://doi.org/10.1097/QCO.0000000000000514

    Article  PubMed  Google Scholar 

  96. Herkert PF, Hagen F, de Oliveira Salvador GL, Gomes RR, Ferreira MS, Vicente VA et al (2016) Molecular characterisation and antifungal susceptibility of clinical Cryptococcus deuterogattii (AFLP6/VGII) isolates from Southern Brazil. Eur J Clin Microbiol Infect Dis 35(11):1803–1810. https://doi.org/10.1007/s10096-016-2731-8

    Article  CAS  PubMed  Google Scholar 

  97. Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS et al (2020) Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. Braz J Microbiol. https://doi.org/10.1007/s42770-020-00383-1

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chagas OJ, Buccheri R, de Souza Carvalho Melhem M, Szeszs W, dos Anjos Martins M, de Oliveira L et al (2020) Usefulness of yeast cell counting and lack of clinical correlation of the antifungal susceptibility testing results in management of aids-associated Cryptococcal meningitis. Curr Fungal Infect Rep 14(1):1–8. https://doi.org/10.1007/s12281-020-00368-5

    Article  Google Scholar 

  99. Costa MM, Madeira L, Feitosa RN, Ishak Mde O, Ishak R, Silva SH et al (2013) Detection of Cryptococcus neoformans capsular antigen in HIV-infected patients in the state of Para in the north of Brazil. Curr HIV Res 11(8):647–651. https://doi.org/10.2174/1570162x12666140311125420

    Article  CAS  PubMed  Google Scholar 

  100. Alspaugh JA (2015) Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet Biol 78:55–58. https://doi.org/10.1016/j.fgb.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  101. Temfack E, Boyer-Chammard T, Lawrence D, Delliere S, Loyse A, Lanternier F et al (2019) New insights into Cryptococcus Spp. biology and cryptococcal meningitis. Curr Neurol Neurosci Rep 19(10):81. https://doi.org/10.1007/s11910-019-0993-0

    Article  CAS  PubMed  Google Scholar 

  102. McFadden DC, Fries BC, Wang F, Casadevall A (2007) Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell 6(8):1464–1473. https://doi.org/10.1128/EC.00162-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Decote-Ricardo D, LaRocque-de-Freitas IF, Rocha JDB, Nascimento DO, Nunes MP, Morrot A et al (2019) Immunomodulatory role of capsular polysaccharides constituents of Cryptococcus neoformans. Front Med (Lausanne) 6:129. https://doi.org/10.3389/fmed.2019.00129

    Article  Google Scholar 

  104. Fonseca FL, Nohara LL, Cordero RJ, Frases S, Casadevall A, Almeida IC et al (2010) Immunomodulatory effects of serotype B glucuronoxylomannan from Cryptococcus gattii correlate with polysaccharide diameter. Infect Immun 78(9):3861–3870. https://doi.org/10.1128/IAI.00111-10

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vecchiarelli A, Pericolini E, Gabrielli E, Chow SK, Bistoni F, Cenci E et al (2011) Cryptococcus neoformans galactoxylomannan is a potent negative immunomodulator, inspiring new approaches in anti-inflammatory immunotherapy. Immunotherapy 3(8):997–1005. https://doi.org/10.2217/imt.11.86

    Article  CAS  PubMed  Google Scholar 

  106. Park YD, Shin S, Panepinto J, Ramos J, Qiu J, Frases S et al (2014) A role for LHC1 in higher order structure and complement binding of the Cryptococcus neoformans capsule. PLoS Pathog 10(5):e1004037. https://doi.org/10.1371/journal.ppat.1004037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. O’Meara TR, Alspaugh JA (2012) The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 25(3):387–408. https://doi.org/10.1128/CMR.00001-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Okabayashi K, Hasegawa A, Watanabe T (2007) Microreview: capsule-associated genes of Cryptococcus neoformans. Mycopathologia 163(1):1–8. https://doi.org/10.1007/s11046-006-0083-0

    Article  CAS  PubMed  Google Scholar 

  109. Thammasit P, Iadnut A, Mamoon K, Khacha-Ananda S, Chupradit K, Tayapiwatana C et al (2018) A potential of propolis on major virulence factors of Cryptococcus neoformans. Microb Pathog 123:296–303. https://doi.org/10.1016/j.micpath.2018.07.028

    Article  CAS  PubMed  Google Scholar 

  110. Eisenman HC, Duong R, Chan H, Tsue R, McClelland EE (2014) Reduced virulence of melanized Cryptococcus neoformans in Galleria mellonella. Virulence 5(5):611–618. https://doi.org/10.4161/viru.29234

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cordero RJ, Casadevall A (2017) Functions of fungal melanin beyond virulence. Fungal Biol Rev 31(2):99–112. https://doi.org/10.1016/j.fbr.2016.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rosas AL, Nosanchuk JD, Feldmesser M, Cox GM, McDade HC, Casadevall A (2000) Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect Immun 68(5):2845–2853. https://doi.org/10.1128/iai.68.5.2845-2853.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Walton FJ, Idnurm A, Heitman J (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57(5):1381–1396. https://doi.org/10.1111/j.1365-2958.2005.04779.x

    Article  CAS  PubMed  Google Scholar 

  114. Baker LG, Specht CA, Donlin MJ, Lodge JK (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6(5):855–867. https://doi.org/10.1128/EC.00399-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC et al (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7(1):58–67. https://doi.org/10.1128/EC.00370-07

    Article  CAS  PubMed  Google Scholar 

  116. Lee D, Jang EH, Lee M, Kim SW, Lee Y, Lee KT et al (2019) Unraveling melanin biosynthesis and signaling networks in Cryptococcus neoformans. mBio 10(5). https://doi.org/10.1128/mBio.02267-19

  117. Jung KW, Yang DH, Maeng S, Lee KT, So YS, Hong J et al (2015) Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Commun 6:6757. https://doi.org/10.1038/ncomms7757

    Article  CAS  PubMed  Google Scholar 

  118. Lee KT, So YS, Yang DH, Jung KW, Choi J, Lee DG et al (2016) Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nat Commun 7:12766. https://doi.org/10.1038/ncomms12766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L (2010) Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 78(4):1601–1609. https://doi.org/10.1128/IAI.01171-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhu X, Williamson PR (2004) Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res 5(1):1–10. https://doi.org/10.1016/j.femsyr.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  121. Qiu Y, Davis MJ, Dayrit JK, Hadd Z, Meister DL, Osterholzer JJ et al (2012) Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice. PLoS ONE 7(10):e47853. https://doi.org/10.1371/journal.pone.0047853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hansakon A, Ngamskulrungroj P, Angkasekwinai P (2020) Contribution of Laccase expression to immune response against Cryptococcus gattii infection. Infect Immun 88(3). https://doi.org/10.1128/IAI.00712-19

  123. Evans RJ, Li Z, Hughes WS, Djordjevic JT, Nielsen K, May RC (2015) Cryptococcal phospholipase B1 is required for intracellular proliferation and control of titan cell morphology during macrophage infection. Infect Immun 83(4):1296–1304. https://doi.org/10.1128/IAI.03104-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Olszewski MA, Noverr MC, Chen GH, Toews GB, Cox GM, Perfect JR et al (2004) Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol 164(5):1761–1771. https://doi.org/10.1016/S0002-9440(10)63734-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Faggi E, Pini G, Campisi E (2005) Use of magnetic beads to extract fungal DNA. Mycoses 48(1):3–7. https://doi.org/10.1111/j.1439-0507.2004.01030.x

    Article  CAS  PubMed  Google Scholar 

  126. Perfect JR (2006) Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 6(4):463–468. https://doi.org/10.1111/j.1567-1364.2006.00051.x

    Article  CAS  PubMed  Google Scholar 

  127. Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73(14):4592–4601. https://doi.org/10.1128/AEM.02506-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Martinez LR, Casadevall A (2006) Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50(3):1021–1033. https://doi.org/10.1128/AAC.50.3.1021-1033.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ramage G, Williams C (2013) The clinical importance of fungal biofilms. Adv Appl Microbiol 84:27–83. https://doi.org/10.1016/B978-0-12-407673-0.00002-3

    Article  CAS  PubMed  Google Scholar 

  130. Martinez LR, Casadevall A (2005) Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun 73(10):6350–6362. https://doi.org/10.1128/IAI.73.10.6350-6362.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Benaducci T, SardiJde C, Lourencetti NM, Scorzoni L, Gullo FP, Rossi SA et al (2016) Virulence of Cryptococcus sp. biofilms in vitro and in vivo using Galleria mellonella as an alternative model. Front Microbiol 7:290. https://doi.org/10.3389/fmicb.2016.00290

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bairwa G, Hee Jung W, Kronstad JW (2017) Iron acquisition in fungal pathogens of humans. Metallomics 9(3):215–227. https://doi.org/10.1039/c6mt00301j

    Article  CAS  PubMed  Google Scholar 

  133. Saikia S, Oliveira D, Hu G, Kronstad J (2014) Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans. Infect Immun 82(2):839–850. https://doi.org/10.1128/IAI.01357-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jung WH, Sham A, Lian T, Singh A, Kosman DJ, Kronstad JW (2008) Iron source preference and regulation of iron uptake in Cryptococcus neoformans. PLoS Pathog 4(2):e45. https://doi.org/10.1371/journal.ppat.0040045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW (2007) The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology (Reading) 153(Pt 1):29–41. https://doi.org/10.1099/mic.0.2006/000927-0

    Article  CAS  Google Scholar 

  136. Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron - a metal at the host-pathogen interface. Cell Microbiol 12(12):1691–1702. https://doi.org/10.1111/j.1462-5822.2010.01529.x

    Article  CAS  PubMed  Google Scholar 

  137. Hu G, Caza M, Cadieux B, Chan V, Liu V, Kronstad J (2013) Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun 81(1):292–302. https://doi.org/10.1128/IAI.01037-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hu G, Caza M, Cadieux B, Bakkeren E, Do E, Jung WH et al (2015) The endosomal sorting complex required for transport machinery influences haem uptake and capsule elaboration in Cryptococcus neoformans. Mol Microbiol 96(5):973–992. https://doi.org/10.1111/mmi.12985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J (2019) Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol 21(3):e12961. https://doi.org/10.1111/cmi.12961

    Article  CAS  PubMed  Google Scholar 

  140. Zaragoza O, Nielsen K (2013) Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr Opin Microbiol 16(4):409–413. https://doi.org/10.1016/j.mib.2013.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hommel B, Mukaremera L, Cordero RJB, Coelho C, Desjardins CA, Sturny-Leclere A et al (2018) Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 14(5):e1006982. https://doi.org/10.1371/journal.ppat.1006982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chrétien F et al (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6(6):e1000953. https://doi.org/10.1371/journal.ppat.1000953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Okagaki LH, Nielsen K (2012) Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections. Eukaryot Cell 11(6):820–826. https://doi.org/10.1128/EC.00121-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6(6):e1000945. https://doi.org/10.1371/journal.ppat.1000945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xie S, Sao R, Braun A, Bottone EJ (2012) Difference in Cryptococcus neoformans cellular and capsule size in sequential pulmonary and meningeal infection: a postmortem study. Diagn Microbiol Infect Dis 73(1):49–52. https://doi.org/10.1016/j.diagmicrobio.2012.01.008

    Article  PubMed  Google Scholar 

  146. Carroll SF, Guillot L, Qureshi ST (2007) Mammalian model hosts of cryptococcal infection. Comp Med 57(1):9–17

    CAS  PubMed  Google Scholar 

  147. Sabiiti W, May RC, Pursall ER (2012) Experimental models of cryptococcosis. Int J Microbiol 2012:626745. https://doi.org/10.1155/2012/626745

    Article  PubMed  Google Scholar 

  148. Arvanitis M, Fuchs BB, Mylonakis E (2014) Nonmammalian model systems to investigate fungal biofilms. Methods Mol Biol 1147:159–172. https://doi.org/10.1007/978-1-4939-0467-9_11

    Article  PubMed  Google Scholar 

  149. Arvanitis M, Glavis-Bloom J, Mylonakis E (2013) Invertebrate models of fungal infection. Biochim Biophys Acta 1832(9):1378–1383. https://doi.org/10.1016/j.bbadis.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  150. Rossoni RD, Ribeiro FC, Dos Santos HFS, Dos Santos JD, Oliveira NS, Dutra M et al (2019) Galleria mellonella as an experimental model to study human oral pathogens. Arch Oral Biol 101:13–22. https://doi.org/10.1016/j.archoralbio.2019.03.002

    Article  PubMed  Google Scholar 

  151. Fuchs BB, Mylonakis E (2006) Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 9(4):346–351. https://doi.org/10.1016/j.mib.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  152. Junqueira JC (2012) Galleria mellonella as a model host for human pathogens: recent studies and new perspectives. Virulence 3(6):474–476. https://doi.org/10.4161/viru.22493

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB et al (2005) Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73(7):3842–3850. https://doi.org/10.1128/IAI.73.7.3842-3850.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Trevijano-Contador N, Herrero-Fernandez I, Garcia-Barbazan I, Scorzoni L, Rueda C, Rossi SA et al (2015) Cryptococcus neoformans induces antimicrobial responses and behaves as a facultative intracellular pathogen in the non mammalian model Galleria mellonella. Virulence 6(1):66–74. https://doi.org/10.4161/21505594.2014.986412

    Article  CAS  PubMed  Google Scholar 

  155. Desalermos A, Fuchs BB, Mylonakis E (2012) Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS Pathog 8(2):e1002451. https://doi.org/10.1371/journal.ppat.1002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mylonakis E, Ausubel FM, Perfect JR, Heitman J, Calderwood SB (2002) Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci U S A 99(24):15675–15680. https://doi.org/10.1073/pnas.232568599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Desalermos A, Tan X, Rajamuthiah R, Arvanitis M, Wang Y, Li D et al (2015) A multi-host approach for the systematic analysis of virulence factors in Cryptococcus neoformans. J Infect Dis 211(2):298–305. https://doi.org/10.1093/infdis/jiu441

    Article  CAS  PubMed  Google Scholar 

  158. Kane A, Campbell L, Ky D, Hibbs D, Carter D (2021) The antifungal and synergistic effect of bisphosphonates in Cryptococcus. Antimicrob Agents Chemother 65(2). https://doi.org/10.1128/AAC.01753-20

  159. Costa MC, Mata LM, Ribeiro NQ, Santos APN, Oliveira LVN, Vilela RVR et al (2018) A new method for studying cryptococcosis in a murine model using 99mTc-Cryptococcus gattii. Med Mycol 56(4):479–484. https://doi.org/10.1093/mmy/myx060

    Article  CAS  PubMed  Google Scholar 

  160. Rossi SA, Trevijano-Contador N, Scorzoni L, Mesa-Arango AC, de Oliveira HC, Werther K et al (2016) Impact of resistance to fluconazole on virulence and morphological aspects of Cryptococcus neoformans and Cryptococcus gattii isolates. Front Microbiol 7:153. https://doi.org/10.3389/fmicb.2016.00153

    Article  PubMed  PubMed Central  Google Scholar 

  161. Palanco AC, Lacorte Singulani J, Costa-Orlandi CB, Gullo FP, Strohmayer Lourencetti NM, Gomes PC et al (2017) Activity of 3’-hydroxychalcone against Cryptococcus gattii and toxicity, and efficacy in alternative animal models. Future Microbiol 12:1123–1134. https://doi.org/10.2217/fmb-2017-0062

    Article  CAS  PubMed  Google Scholar 

  162. Garcia AWA, Kinskovski UP, Diehl C, Reuwsaat JCV, Motta de Souza H, Pinto HB et al (2020) Participation of Zip3, a ZIP domain-containing protein, in stress response and virulence in Cryptococcus gattii. Fungal Genet Biol 144:103438. https://doi.org/10.1016/j.fgb.2020.103438

    Article  CAS  PubMed  Google Scholar 

  163. de Castro Spadari C, da Silva de Bastiani FWM, Pisani PBB, de Azevedo Melo AS, Ishida K (2020) Efficacy of voriconazole in vitro and in invertebrate model of cryptococcosis. Arch Microbiol 202(4):773–84. https://doi.org/10.1007/s00203-019-01789-8

    Article  CAS  PubMed  Google Scholar 

  164. Sangalli-Leite F, Scorzoni L, Alves de Paula E, Silva AC, da Silva JF, de Oliveira HC, de Lacorte Singulani J et al (2016) Synergistic effect of pedalitin and amphotericin B against Cryptococcus neoformans by in vitro and in vivo evaluation. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2016.07.025

    Article  PubMed  Google Scholar 

  165. Sa NP, Lima CM, Dos Santos JRA, Costa MC, de Barros PP, Junqueira JC et al (2018) A phenylthiazole derivative demonstrates efficacy on treatment of the cryptococcosis & candidiasis in animal models. Future Sci OA 4(6):305. https://doi.org/10.4155/fsoa-2018-0001

    Article  CAS  Google Scholar 

  166. da Silva-Junior EB, Firmino-Cruz L, Guimaraes-de-Oliveira JC, De-Medeiros JVR, de Oliveira ND, Freire-de-Lima M et al (2021) The role of Toll-like receptor 9 in a murine model of Cryptococcus gattii infection. Sci Rep 11(1):1407. https://doi.org/10.1038/s41598-021-80959-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. da Silva DL, Magalhaes TF, Dos Santos JR, de Paula TP, Modolo LV, de Fatima A et al (2016) Curcumin enhances the activity of fluconazole against Cryptococcus gattii-induced cryptococcosis infection in mice. J Appl Microbiol 120(1):41–48. https://doi.org/10.1111/jam.12966

    Article  CAS  PubMed  Google Scholar 

  168. Costa MC, Santos JR, Ribeiro MJ, Freitas GJ, Bastos RW, Ferreira GF et al (2016) The absence of microbiota delays the inflammatory response to Cryptococcus gattii. Int J Med Microbiol 306(4):187–195. https://doi.org/10.1016/j.ijmm.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  169. Bastos RW, Freitas GJC, Carneiro HCS, Oliveira LVN, Gouveia-Eufrasio L, Santos APN et al (2019) From the environment to the host: How non-azole agrochemical exposure affects the antifungal susceptibility and virulence of Cryptococcus gattii. Sci Total Environ 681:516–523. https://doi.org/10.1016/j.scitotenv.2019.05.094

    Article  CAS  PubMed  Google Scholar 

  170. Alves IA, Staudt KJ, Silva CM, Lock GA, Dalla Costa T, de Araujo BV (2017) Influence of experimental cryptococcal meningitis in wistar rats on voriconazole brain penetration assessed by microdialysis. Antimicrob Agents Chemother 61(7). https://doi.org/10.1128/AAC.00321-17

  171. Rosa RL, Berger M, Santi L, Driemeier D, Barros Terraciano P, Campos AR et al (2019) Proteomics of rat lungs infected by Cryptococcus gattii reveals a potential Warburg-like effect. J Proteome Res 18(11):3885–3895. https://doi.org/10.1021/acs.jproteome.9b00326

    Article  CAS  PubMed  Google Scholar 

  172. Yu C, Wei S, Han X, Liu H, Wang M, Jiang M et al (2018) Effective inhibition of Cbf-14 against Cryptococcus neoformans infection in mice and its related anti-inflammatory activity. Fungal Genet Biol 110:38–47. https://doi.org/10.1016/j.fgb.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  173. Krockenberger MB, Malik R, Ngamskulrungroj P, Trilles L, Escandon P, Dowd S et al (2010) Pathogenesis of pulmonary Cryptococcus gattii infection: a rat model. Mycopathologia 170(5):315–330. https://doi.org/10.1007/s11046-010-9328-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Scorzoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Carlos Pelleschi Taborda

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Carmo, F.N., de Camargo Fenley, J., Garcia, M.T. et al. Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 53, 1321–1337 (2022). https://doi.org/10.1007/s42770-022-00744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00744-y

Keywords

Navigation