Skip to main content

Advertisement

Log in

Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abouzeid H, Youssef MA, Bayoumi N, ElShakankiri N, Marzouk I, Hauser P, Schorderet DF (2012) RAX and anophthalmia in humans: evidence of brain anomalies. Mol Vis 18:1449–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abouzeid H, Favez T, Schmid A, Agosti C, Youssef M, Marzouk I, El Shakankiry N, Bayoumi N, Munier FL, Schorderet DF (2014) Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families. Hum Mutat 35:949–953. https://doi.org/10.1002/humu.22580

    Article  CAS  PubMed  Google Scholar 

  • Aijaz S, Clark BJ, Williamson K, van Heyningen V, Morrison D, Fitzpatrick D, Collin R, Ragge N, Christoforou A, Brown A, Hanson I (2004) Absence of SIX6 mutations in microphthalmia, anophthalmia, and coloboma. Investig Ophthalmol Vis Sci 45:3871–3876. https://doi.org/10.1167/iovs.04-0641

    Article  Google Scholar 

  • Akizu N, Shembesh NM, Ben-Omran T, Bastaki L, Al-Tawari A, Zaki MS, Koul R, Spencer E, Rosti RO, Scott E, Nickerson E, Gabriel S, da Gente G, Li J, Deardorff MA, Conlin LK, Horton MA, Zackai EH, Sherr EH, Gleeson JG (2013) Whole-exome sequencing identifies mutated c12orf57 in recessive corpus callosum hypoplasia. Am J Hum Genet 92:392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alabdullatif MA, Al Dhaibani MA, Khassawneh MY, El-Hattab AW (2017) Chromosomal microarray in a highly consanguineous population: diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin Genet 91:616–622. https://doi.org/10.1111/cge.12872

    Article  CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Khan AO, Mohamed J, Alkuraya FS (2011a) Novel recessive BFSP2 and PITX3 mutations: insights into mutational mechanisms from consanguineous populations. Genet Med 13:978–981. https://doi.org/10.1097/GIM.0b013e31822623d5

    Article  CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Nowilaty SR, Alzahrani F, Al-Ebdi L, Mohamed JY, Rajab M, Khan AO, Alkuraya FS (2011b) Posterior microphthalmos as a genetically heterogeneous condition that can be allelic to nanophthalmos. Arch Ophthalmol 129:805–807. https://doi.org/10.1001/archophthalmol.2011.129

    Article  PubMed  Google Scholar 

  • Aldahmesh MA, Mohammed JY, Al-Hazzaa S, Alkuraya FS (2012) Homozygous null mutation in ODZ3 causes microphthalmia in humans. Genet Med 14:900–904. https://doi.org/10.1038/gim.2012.71

    Article  CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Khan AO, Hijazi H, Alkuraya FS (2013a) Homozygous truncation of SIX6 causes complex microphthalmia in humans. Clin Genet 84:198–199

    Article  CAS  PubMed  Google Scholar 

  • Aldahmesh MA, Khan AO, Hijazi H, Alkuraya FS (2013b) Mutations in ALDH1A3 cause microphthalmia. Clin Genet 84:128–131

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Buentello-Volante B, McKibbin M, Rocha-Medina JA, Fernandez-Fuentes N, Koga-Nakamura W, Ashiq A, Khan K, Booth AP, Williams G, Raashid Y, Jafri H, Rice A, Inglehearn CF, Zenteno JC (2010) Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma. Mol Vis 16:1162–1168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alrakaf L, Al-Owain MA, Busehail M, Alotaibi MA, Monies D, Aldhalaan HM, Alhashem A, Al-Hassnan ZN, Rahbeeni ZA, Murshedi FA, Ani NA, Al-Maawali A, Ibrahim NA, Abdulwahab FM, Alsagob M, Hashem MO, Ramadan W, Abouelhoda M, Meyer BF, Kaya N, Maddirevula S, Alkuraya FS (2018) Further delineation of Temtamy syndrome of corpus callosum and ocular abnormalities. Am J Med Genet A 176:715–721. https://doi.org/10.1002/ajmg.a.38615

    Article  CAS  PubMed  Google Scholar 

  • Ammar THA, Ismail S, Mansour OAA, El-Shafey MM, Doghish AS, Kamal AM, Abdel-Salam GMH (2017) Genetic analysis of SOX2 and VSX2 genes in 27 Egyptian families with anophthalmia and microphthalmia. Ophthalmic Genet 38:498–500. https://doi.org/10.1080/13816810.2017.1279184

    Article  PubMed  Google Scholar 

  • Anand D, Agrawal SA, Slavotinek A, Lachke SA (2018) Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects. Hum Mutat 39:471–494. https://doi.org/10.1002/humu.23395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum I, Eiberg H, Baig SM, Tommerup N, Hansen L (2010) A mutation in the FOXE3 gene causes congenital primary aphakia in an autosomal recessive consanguineous Pakistani family. Mol Vis 16:549–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari M, Rainger J, Hanson IM, Williamson KA, Sharkey F, Harewood L, Sandilands A, Clayton-Smith J, Dollfus H, Bitoun P, Meire F, Fantes J, Franco B, Lorenz B, Taylor DS, Stewart F, Willoughby CE, McEntagart M, Khaw PT, Clericuzio C, Van Maldergem L, Williams D, Newbury-Ecob R, Traboulsi EI, Silva ED, Madlom MM, Goudie DR, Fleck BW, Wieczorek D, Kohlhase J, McTrusty AD, Gardiner C, Yale C, Moore AT, Russell-Eggitt I, Islam L, Lees M, Beales PL, Tuft SJ, Solano JB, Splitt M, Hertz JM, Prescott TE, Shears DJ, Nischal KK, Doco-Fenzy M, Prieur F, Temple IK, Lachlan KL, Damante G, Morrison DA, van Heyningen V, FitzPatrick DR (2016) Genetic analysis of ‘PAX6-negative’ individuals with Aniridia or Gillespie syndrome. PLoS One 11:e0153757. https://doi.org/10.1371/journal.pone.0153757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antinucci P, Nikolaou N, Meyer MP, Hindges R (2013) Teneurin-3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system. Cell Rep 5:582–592. https://doi.org/10.1016/j.celrep.2013.09.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai-Coakwell M, French CR, Berry KM, Ye M, Koss R, Somerville M, Mueller R, van Heyningen V, Waskiewicz AJ, Lehmann OJ (2007) GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet 80:306–315

    Article  CAS  PubMed  Google Scholar 

  • Asai-Coakwell M, French CR, Ye M, Garcha K, Bigot K, Perera AG, Staehling-Hampton K, Mema SC, Chanda B, Mushegian A, Bamforth S, Doschak MR, Li G, Dobbs MB, Giampietro PF, Brooks BP, Vijayalakshmi P, Sauve Y, Abitbol M, Sundaresan P, van Heyningen V, Pourquie O, Underhill TM, Waskiewicz AJ, Lehmann OJ (2009) Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Hum Mol Genet 18:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Awadalla MS, Burdon KP, Souzeau E, Landers J, Hewitt AW, Sharma S, Craig JE (2014) Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. JAMA Ophthalmol 132:970–977. https://doi.org/10.1001/jamaophthalmol.2014.946

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Ramirez R, Graue-Wiechers F, Robredo V, Amato-Almanza M, Horta-Diez I, Zenteno JC (2006) A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Mol Vis 12:1483–1489

    CAS  PubMed  Google Scholar 

  • Bailey TJ, El-Hodiri H, Zhang L, Shah R, Mathers PH, Jamrich M (2004) Regulation of vertebrate eye development by Rx genes. Int J Dev Biol 48:761–770

    Article  CAS  PubMed  Google Scholar 

  • Bakrania P, Robinson DO, Bunyan DJ, Salt A, Martin A, Crolla JA, Wyatt A, Fielder A, Ainsworth J, Moore A, Read S, Uddin J, Laws D, Pascuel-Salcedo D, Ayuso C, Allen L, Collin JR, Ragge NK (2007) SOX2 anophthalmia syndrome: 12 new cases demonstrating broader phenotype and high frequency of large gene deletions. Br J Ophthalmol 91:1471–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A, Ponting CP, Martin A, Williams S, Lindley V, Gilmore J, Restori M, Robson AG, Neveu MM, Holder GE, Collin JR, Robinson DO, Farndon P, Johansen-Berg H, Gerrelli D, Ragge NK (2008) Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 82:304–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldessari D, Badaloni A, Longhi R, Zappavigna V, Consalez GG (2004) MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. BMC Cell Biol 5:48. https://doi.org/10.1186/1471-2121-5-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balikova I, de Ravel T, Ayuso C, Thienpont B, Casteels I, Villaverde C, Devriendt K, Fryns JP, Vermeesch JR (2011) High frequency of submicroscopic chromosomal deletions in patients with idiopathic congenital eye malformations. Am J Ophthalmol 151:1087–1094 e45

    Article  PubMed  Google Scholar 

  • Bardakjian T, Krall M, Wu D, Lao R, Tang PL, Wan E, Kopinsky S, Schneider A, Kwok PY, Slavotinek A (2017) A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 (GDF3) in a female with unilateral anophthalmia and skeletal anomalies. Am J Ophthalmol Case Rep 7:102–106. https://doi.org/10.1016/j.ajoc.2017.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett CP, Betts DR, Seller MJ (1991) Deletion 14q (q22q23) associated with anophthalmia, absent pituitary, and other abnormalities. J Med Genet 28:280–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Zur T, Feige E, Motro B, Wides R (2000) The mammalian Odz gene family: homologs of a Drosophila pair-rule gene with expression implying distinct yet overlapping developmental roles. Dev Biol 217:107–120. https://doi.org/10.1006/dbio.1999.9532

    Article  CAS  PubMed  Google Scholar 

  • Bermejo E, Martinez-Frias ML (1998) Congenital eye malformations: clinical-epidemiological analysis of 1,124,654 consecutive births in Spain. Am J Med Genet 75:497–504

    Article  CAS  PubMed  Google Scholar 

  • Berry V, Yang Z, Addison PK, Francis PJ, Ionides A, Karan G, Jiang L, Lin W, Hu J, Yang R, Moore A, Zhang K, Bhattacharya SS (2004) Recurrent 17 bp duplication in PITX3 is primarily associated with posterior polar cataract (CPP4). J Med Genet 41:e109. https://doi.org/10.1136/jmg.2004.020289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertuzzi S, Hindges R, Mui SH, O’Leary DD, Lemke G (1999) The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev 13:3092–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia S, Bengani H, Fish M, Brown A, Divizia MT, de Marco R, Damante G, Grainger R, van Heyningen V, Kleinjan DA (2013) Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet 93:1126–1134. https://doi.org/10.1016/j.ajhg.2013.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K, Stockton DW, Khoury A, Megarbane A, Bejjani BA, Traboulsi EI (2006) Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Investig Ophthalmol Vis Sci 47:1274–1280. https://doi.org/10.1167/iovs.05-1095

    Article  Google Scholar 

  • Blixt A, Mahlapuu M, Aitola M, Pelto-Huikko M, Enerback S, Carlsson P (2000) A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev 14:245–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bremond-Gignac D, Bitoun P, Reis LM, Copin H, Murray JC, Semina EV (2010) Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia. Mol Vis 16:1705–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NL, Patel S, Brzezinski J, Glaser T (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development 128:2497–2508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdon KP, McKay JD, Wirth MG, Russell-Eggit IM, Bhatti S, Ruddle JB, Dimasi D, Mackey DA, Craig JE (2006) The PITX3 gene in posterior polar congenital cataract in Australia. Mol Vis 12:367–371

    CAS  PubMed  Google Scholar 

  • Burkitt Wright EM, Perveen R, Bowers N, Ramsden S, McCann E, O’Driscoll M, Lloyd IC, Clayton-Smith J, Black GC (2010) VSX2 in microphthalmia: a novel splice site mutation producing a severe microphthalmia phenotype. Br J Ophthalmol 94:386–388

    Article  PubMed  Google Scholar 

  • Busby A, Dolk H, Collin R, Jones RB, Winter R (1998) Compiling a national register of babies born with anophthalmia/microphthalmia in England 1988-94. Arch Dis Child Fetal Neonatal Ed 79:F168–F173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey J, Kawaguchi R, Morrissey M, Sun H, McGettigan P, Nielsen JE, Conroy J, Regan R, Kenny E, Cormican P, Morris DW, Tormey P, Chroinin MN, Kennedy BN, Lynch S, Green A, Ennis S (2011) First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype. Hum Mutat 32:1417–1426. https://doi.org/10.1002/humu.21590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavodeassi F, Creuzet S, Etchevers HC (2018) The hedgehog pathway and ocular developmental anomalies. Hum Genet. https://doi.org/10.1007/s00439-018-1918-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceroni F, Aguilera-Garcia D, Chassaing N, Bax DA, Blanco-Kelly F, Ramos P, Tarilonte M, Villaverde C, da Silva LRJ, Ballesta-Martinez MJ, Sanchez-Soler MJ, Holt RJ, Cooper-Charles L, Bruty J, Wallis Y, McMullan D, Hoffman J, Bunyan D, Stewart A, Stewart H, Lachlan K, Study DDD, Fryer A, McKay V, Roume J, Dureau P, Saggar A, Griffiths M, Calvas P, Ayuso C, Corton M, Ragge NK (2018) New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Hum Genet. https://doi.org/10.1007/s00439-018-1875-2

    Article  PubMed  Google Scholar 

  • Chambers TM, Agopian AJ, Lewis RA, Langlois PH, Danysh HE, Weber KA, Shaw GM, Mitchell LE, Lupo PJ (2018) Epidemiology of anophthalmia and microphthalmia: prevalence and patterns in Texas, 1999–2009. Am J Med Genet A. https://doi.org/10.1002/ajmg.a.40352

    Article  PubMed  PubMed Central  Google Scholar 

  • Chassaing N, Gilbert-Dussardier B, Nicot F, Fermeaux V, Encha-Razavi F, Fiorenza M, Toutain A, Calvas P (2007) Germinal mosaicism and familial recurrence of a SOX2 mutation with highly variable phenotypic expression extending from AEG syndrome to absence of ocular involvement. Am J Med Genet A 143:289–291

    Article  CAS  Google Scholar 

  • Chassaing N, Golzio C, Odent S, Lequeux L, Vigouroux A, Martinovic-Bouriel J, Tiziano FD, Masini L, Piro F, Maragliano G, Delezoide AL, Attie-Bitach T, Manouvrier-Hanu S, Etchevers HC, Calvas P (2009) Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 30:E673–E681

    Article  PubMed  Google Scholar 

  • Chassaing N, Sorrentino S, Davis EE, Martin-Coignard D, Iacovelli A, Paznekas W, Webb BD, Faye-Petersen O, Encha-Razavi F, Lequeux L, Vigouroux A, Yesilyurt A, Boyadjiev SA, Kayserili H, Loget P, Carles D, Sergi C, Puvabanditsin S, Chen CP, Etchevers HC, Katsanis N, Mercer CL, Calvas P, Jabs EW (2012) OTX2 mutations contribute to the otocephaly–dysgnathia complex. J Med Genet 49:373–379

    Article  CAS  PubMed  Google Scholar 

  • Chassaing N, Ragge N, Kariminejad A, Buffet A, Ghaderi-Sohi S, Martinovic J, Calvas P (2013) Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia. Clin Genet 83:244–250

    Article  CAS  PubMed  Google Scholar 

  • Chassaing N, Causse A, Vigouroux A, Delahaye A, Alessandri JL, Boespflug-Tanguy O, Boute-Benejean O, Dollfus H, Duban-Bedu B, Gilbert-Dussardier B, Giuliano F, Gonzales M, Holder-Espinasse M, Isidor B, Jacquemont ML, Lacombe D, Martin-Coignard D, Mathieu-Dramard M, Odent S, Picone O, Pinson L, Quelin C, Sigaudy S, Toutain A, Thauvin-Robinet C, Kaplan J, Calvas P (2014) Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin Genet 86:326–334

    Article  CAS  PubMed  Google Scholar 

  • Chassaing N, Davis EE, McKnight KL, Niederriter AR, Causse A, David V, Desmaison A, Lamarre S, Vincent-Delorme C, Pasquier L, Coubes C, Lacombe D, Rossi M, Dufier JL, Dollfus H, Kaplan J, Katsanis N, Etchevers HC, Faguer S, Calvas P (2016a) Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res 26:474–485. https://doi.org/10.1101/gr.196048.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassaing N, Ragge N, Plaisancie J, Patat O, Genevieve D, Rivier F, Malrieu-Eliaou C, Hamel C, Kaplan J, Calvas P (2016b) Confirmation of TENM3 involvement in autosomal recessive colobomatous microphthalmia. Am J Med Genet A 170:1895–1898. https://doi.org/10.1002/ajmg.a.37667

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Pal JK (2009) Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biol Cell 101:251–262. https://doi.org/10.1042/BC20080104

    Article  CAS  PubMed  Google Scholar 

  • Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996

    Article  CAS  PubMed  Google Scholar 

  • Chitayat D, Sroka H, Keating S, Colby RS, Ryan G, Toi A, Blaser S, Viero S, Devisme L, Boute-Benejean O, Manouvrier-Hanu S, Mortier G, Loeys B, Rauch A, Bitoun P (2007) The PDAC syndrome (pulmonary hypoplasia/agenesis, diaphragmatic hernia/eventration, anophthalmia/microphthalmia, and cardiac defect) (Spear syndrome, Matthew-Wood syndrome): report of eight cases including a living child and further evidence for autosomal recessive inheritance. Am J Med Genet A 143A:1268–1281. https://doi.org/10.1002/ajmg.a.31788

    Article  PubMed  Google Scholar 

  • Choi A, Lao R, Ling-Fung Tang P, Wan E, Mayer W, Bardakjian T, Shaw GM, Kwok PY, Schneider A, Slavotinek A (2015) Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis. Eur J Hum Genet 23:337–341. https://doi.org/10.1038/ejhg.2014.119

    Article  CAS  PubMed  Google Scholar 

  • Chou CM, Nelson C, Tarle SA, Pribila JT, Bardakjian T, Woods S, Schneider A, Glaser T (2015) Biochemical basis for dominant inheritance, variable penetrance, and maternal effects in RBP4 congenital eye disease. Cell 161:634–646. https://doi.org/10.1016/j.cell.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow KL, Hall DH, Emmons SW (1995) The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development 121:3615–3626

    CAS  PubMed  Google Scholar 

  • Cipriani V, Silva RS, Arno G, Pontikos N, Kalhoro A, Valeina S, Inashkina I, Audere M, Rutka K, Puech B, Michaelides M, van Heyningen V, Lace B, Webster AR, Moore AT (2017) Duplication events downstream of IRX1 cause North Carolina macular dystrophy at the MCDR3 locus. Sci Rep 7:7512. https://doi.org/10.1038/s41598-017-06387-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collery RF, Volberding PJ, Bostrom JR, Link BA, Besharse JC (2016) Loss of zebrafish Mfrp causes nanophthalmia, hyperopia, and accumulation of subretinal macrophages. Investig Ophthalmol Vis Sci 57:6805–6814. https://doi.org/10.1167/iovs.16-19593

    Article  CAS  Google Scholar 

  • Conte I, Hadfield KD, Barbato S, Carrella S, Pizzo M, Bhat RS, Carissimo A, Karali M, Porter LF, Urquhart J, Hateley S, O’Sullivan J, Manson FD, Neuhauss SC, Banfi S, Black GC (2015) MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma. Proc Natl Acad Sci USA 112:E3236–E3245. https://doi.org/10.1073/pnas.1401464112

    Article  CAS  PubMed  Google Scholar 

  • Crespi J, Buil JA, Bassaganyas F, Vela-Segarra JI, Diaz-Cascajosa J, Ayala-Ramirez R, Zenteno JC (2008) A novel mutation confirms MFRP as the gene causing the syndrome of nanophthalmos-renititis pigmentosa-foveoschisis-optic disk drusen. Am J Ophthalmol 146:323–328. https://doi.org/10.1016/j.ajo.2008.04.029

    Article  CAS  PubMed  Google Scholar 

  • Cui YX, Xia XY, Zhou Y, Gao L, Shang XJ, Ni T, Wang WP, Fan XB, Yin HL, Jiang SJ, Yao B, Hu YA, Wang G, Li XJ (2013) Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria. PLoS One 8:e79808. https://doi.org/10.1371/journal.pone.0079808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cukras C, Gaasterland T, Lee P, Gudiseva HV, Chavali VR, Pullakhandam R, Maranhao B, Edsall L, Soares S, Reddy GB, Sieving PA, Ayyagari R (2012) Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities. PLoS One 7:e50205. https://doi.org/10.1371/journal.pone.0050205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham TJ, Duester G (2015) Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16:110–123. https://doi.org/10.1038/nrm3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvekl A, Wang WL (2009) Retinoic acid signaling in mammalian eye development. Exp Eye Res 89:280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale N, Salt A (2007) Early support developmental journal for children with visual impairment: the case for a new developmental framework for early intervention. Child Care Health Dev 33:684–690. https://doi.org/10.1111/j.1365-2214.2007.00798.x

    Article  CAS  PubMed  Google Scholar 

  • Dansault A, David G, Schwartz C, Jaliffa C, Vieira V, de la Houssaye G, Bigot K, Catin F, Tattu L, Chopin C, Halimi P, Roche O, Van Regemorter N, Munier F, Schorderet D, Dufier JL, Marsac C, Ricquier D, Menasche M, Penfornis A, Abitbol M (2007) Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities. Mol Vis 13:511–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AE, Liskova P, Evans CJ, Dudakova L, Noskova L, Pontikos N, Hartmannova H, Hodanova K, Stranecky V, Kozmik Z, Levis HJ, Idigo N, Sasai N, Maher GJ, Bellingham J, Veli N, Ebenezer ND, Cheetham ME, Daniels JT, Thaung CM, Jirsova K, Plagnol V, Filipec M, Kmoch S, Tuft SJ, Hardcastle AJ (2016) Autosomal-dominant corneal endothelial dystrophies CHED1 and PPCD1 are allelic disorders caused by non-coding mutations in the promoter of OVOL2. Am J Hum Genet 98:75–89. https://doi.org/10.1016/j.ajhg.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira Mann CC, Kiefersauer R, Witte G, Hopfner KP (2016) Structural and biochemical characterization of the cell fate determining nucleotidyltransferase fold protein MAB21L1. Sci Rep 6:27498. https://doi.org/10.1038/srep27498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghani M, Dehghan Tezerjani M, Metanat Z, Vahidi Mehrjardi MY (2017) A novel missense mutation in the ALDH13 gene causes anophthalmia in two unrelated iranian consanguineous families. Int J Mol Cell Med 6:131–134. https://doi.org/10.22088/acadpub.BUMS.6.2.7

    Article  PubMed  PubMed Central  Google Scholar 

  • Delahaye A, Bitoun P, Drunat S, Gerard-Blanluet M, Chassaing N, Toutain A, Verloes A, Gatelais F, Legendre M, Faivre L, Passemard S, Aboura A, Kaltenbach S, Quentin S, Dupont C, Tabet AC, Amselem S, Elion J, Gressens P, Pipiras E, Benzacken B (2012) Genomic imbalances detected by array-CGH in patients with syndromal ocular developmental anomalies. Eur J Hum Genet 20:527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deml B, Kariminejad A, Borujerdi RH, Muheisen S, Reis LM, Semina EV (2015) Mutations in MAB21L2 result in ocular coloboma, microcornea and cataracts. PLoS Genet 11:e1005002. https://doi.org/10.1371/journal.pgen.1005002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deml B, Reis LM, Lemyre E, Clark RD, Kariminejad A, Semina EV (2016) Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma. Eur J Hum Genet 24:535–541. https://doi.org/10.1038/ejhg.2015.155

    Article  CAS  PubMed  Google Scholar 

  • den Hollander AI, Biyanwila J, Kovach P, Bardakjian T, Traboulsi EI, Ragge NK, Schneider A, Malicki J (2010) Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies. BMC Genet 11:102. https://doi.org/10.1186/1471-2156-11-102

    Article  CAS  Google Scholar 

  • Dennert N, Engels H, Cremer K, Becker J, Wohlleber E, Albrecht B, Ehret JK, Ludecke HJ, Suri M, Carignani G, Renieri A, Kukuk GM, Wieland T, Andrieux J, Strom TM, Wieczorek D, Dieux-Coeslier A, Zink AM (2017) De novo microdeletions and point mutations affecting SOX2 in three individuals with intellectual disability but without major eye malformations. Am J Med Genet A 173:435–443. https://doi.org/10.1002/ajmg.a.38034

    Article  CAS  PubMed  Google Scholar 

  • Dimanlig PV, Faber SC, Auerbach W, Makarenkova HP, Lang RA (2001) The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development 128:4415–4424

    CAS  PubMed  Google Scholar 

  • Dolk H, Busby A, Armstrong BG, Walls PH (1998) Geographical variation in anophthalmia and microphthalmia in England, 1988-94. BMJ 317:905–909 (discussion 910)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucette L, Green J, Fernandez B, Johnson GJ, Parfrey P, Young TL (2011) A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly. Eur J Hum Genet 19:293–299

    Article  PubMed  Google Scholar 

  • Dudley AT, Robertson EJ (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208:349–362. https://doi.org/10.1002/(SICI)1097-0177(199703)208:3%3C349::AID-AJA6%3E3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  • Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807

    Article  CAS  PubMed  Google Scholar 

  • Duszak RS (2009) Congenital rubella syndrome—major review. Optometry 80:36–43. https://doi.org/10.1016/j.optm.2008.03.006

    Article  PubMed  Google Scholar 

  • Edwards MM, McLeod DS, Li R, Grebe R, Bhutto I, Mu X, Lutty GA (2012) The deletion of Math5 disrupts retinal blood vessel and glial development in mice. Exp Eye Res 96:147–156. https://doi.org/10.1016/j.exer.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  • Elliott J, Maltby EL, Reynolds B (1993) A case of deletion 14(q22.1–>q22.3) associated with anophthalmia and pituitary abnormalities. J Med Genet 30:251–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faivre L, Williamson KA, Faber V, Laurent N, Grimaldi M, Thauvin-Robinet C, Durand C, Mugneret F, Gouyon JB, Bron A, Huet F, Hayward C, Heyningen V, Fitzpatrick DR (2006) Recurrence of SOX2 anophthalmia syndrome with gonosomal mosaicism in a phenotypically normal mother. Am J Med Genet A 140:636–639

    Article  CAS  PubMed  Google Scholar 

  • Fantes J, Redeker B, Breen M, Boyle S, Brown J, Fletcher J, Jones S, Bickmore W, Fukushima Y, Mannens M et al (1995) Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum Mol Genet 4:415–422

    Article  CAS  PubMed  Google Scholar 

  • Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, FitzPatrick DR (2003) Mutations in SOX2 cause anophthalmia. Nat Genet 33:461–463

    Article  CAS  PubMed  Google Scholar 

  • Fares-Taie L, Gerber S, Chassaing N, Clayton-Smith J, Hanein S, Silva E, Serey M, Serre V, Gerard X, Baumann C, Plessis G, Demeer B, Bretillon L, Bole C, Nitschke P, Munnich A, Lyonnet S, Calvas P, Kaplan J, Ragge N, Rozet JM (2013) ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. Am J Hum Genet 92:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng K, Zhou XH, Oohashi T, Morgelin M, Lustig A, Hirakawa S, Ninomiya Y, Engel J, Rauch U, Fassler R (2002) All four members of the Ten-m/Odz family of transmembrane proteins form dimers. J Biol Chem 277:26128–26135. https://doi.org/10.1074/jbc.M203722200

    Article  CAS  PubMed  Google Scholar 

  • Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, Rutherford A, Bapat B, Cox DW, Duncan AM, Kalnins VI, Kocak-Altintas A, Sowden JC, Traboulsi E, Sarfarazi M, McInnes RR (2000) Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 25:397–401

    Article  CAS  PubMed  Google Scholar 

  • Finzi S, Li Y, Mitchell TN, Farr A, Maumenee IH, Sallum JM, Sundin O (2005) Posterior polar cataract: genetic analysis of a large family. Ophthalmic Genet 26:125–130. https://doi.org/10.1080/13816810500229124

    Article  PubMed  Google Scholar 

  • Fitzpatrick DR, van Heyningen V (2005) Developmental eye disorders. Curr Opin Genet Dev 15:348–353

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann S (2010) Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol 93:61–84. https://doi.org/10.1016/B978-0-12-385044-7.00003-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Gal A, Rau I, El Matri L, Kreienkamp HJ, Fehr S, Baklouti K, Chouchane I, Li Y, Rehbein M, Fuchs J, Fledelius HC, Vilhelmsen K, Schorderet DF, Munier FL, Ostergaard E, Thompson DA, Rosenberg T (2011) Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. Am J Hum Genet 88:382–390. https://doi.org/10.1016/j.ajhg.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo ME, Lopez-Rios J, Fernaud-Espinosa I, Granadino B, Sanz R, Ramos C, Ayuso C, Seller MJ, Brunner HG, Bovolenta P, Rodriguez de Cordoba S (1999) Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics 61:82–91. https://doi.org/10.1006/geno.1999.5916

    Article  CAS  PubMed  Google Scholar 

  • Gallardo ME, Rodriguez De Cordoba S, Schneider AS, Dwyer MA, Ayuso C, Bovolenta P (2004) Analysis of the developmental SIX6 homeobox gene in patients with anophthalmia/microphthalmia. Am J Med Genet A 129A:92–94. https://doi.org/10.1002/ajmg.a.30126

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Montalvo IA, Pelcastre-Luna E, Nelson-Mora J, Buentello-Volante B, Miranda-Duarte A, Zenteno JC (2014) Mutational screening of FOXE3, GDF3, ATOH7, and ALDH1A3 in congenital ocular malformations. Possible contribution of the FOXE3 p.VAL201MET variant to the risk of severe eye malformations. Ophthalmic Genet 35:190–192. https://doi.org/10.3109/13816810.2014.903983

    Article  CAS  PubMed  Google Scholar 

  • Gerth-Kahlert C, Williamson K, Ansari M, Rainger JK, Hingst V, Zimmermann T, Tech S, Guthoff RF, van Heyningen V, FitzPatrick DR (2013) Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol Genet Genomic Med 1:15–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JA, Goldman D, Glaser T (2011) Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat Neurosci 14:578–586. https://doi.org/10.1038/nn.2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7:463–471

    Article  CAS  PubMed  Google Scholar 

  • Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M, Delahaye S, Munnich A, Encha-Razavi F, Lyonnet S, Vekemans M, Attie-Bitach T, Etchevers HC (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 80:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Rodriguez J, Pelcastre EL, Tovilla-Canales JL, Garcia-Ortiz JE, Amato-Almanza M, Villanueva-Mendoza C, Espinosa-Mattar Z, Zenteno JC (2010) Mutational screening of CHX10, GDF6, OTX2, RAX and SOX2 genes in 50 unrelated microphthalmia–anophthalmia–coloboma (MAC) spectrum cases. Br J Ophthalmol 94:1100–1104

    Article  CAS  PubMed  Google Scholar 

  • Hall HN, Williamson KA, FitzPatrick DR (2018) The genetic architecture of aniridia and Gillespie syndrome. Hum Genet. https://doi.org/10.1007/s00439-018-1934-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallonet M, Hollemann T, Pieler T, Gruss P (1999) Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev 13:3106–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi S, Okamoto N, Makita Y, Hata A, Imoto I, Inazawa J (2008) Heterozygous deletion at 14q22.1-q22.3 including the BMP4 gene in a patient with psychomotor retardation, congenital corneal opacity and feet polysyndactyly. Am J Med Genet A 146A:2905–2910

    Article  PubMed  Google Scholar 

  • Helias V, Saison C, Ballif BA, Peyrard T, Takahashi J, Takahashi H, Tanaka M, Deybach JC, Puy H, Le Gall M, Sureau C, Pham BN, Le Pennec PY, Tani Y, Cartron JP, Arnaud L (2012) ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nat Genet 44:170–173. https://doi.org/10.1038/ng.1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson RH, Williamson KA, Kennedy JS, Webster AR, Holder GE, Robson AG, FitzPatrick DR, van Heyningen V, Moore AT (2009) A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis 15:2442–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485. https://doi.org/10.1016/j.dci.2003.09.007

    Article  CAS  PubMed  Google Scholar 

  • Hever AM, Williamson KA, van Heyningen V (2006) Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet 69:459–470

    Article  CAS  PubMed  Google Scholar 

  • Hingorani M, Hanson I, van Heyningen V (2012) Aniridia. Eur J Hum Genet 20:1011–1017. https://doi.org/10.1038/ejhg.2012.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt R, Ceroni F, Bax DA, Broadgate S, Diaz DG, Santos C, Gerrelli D, Ragge NK (2017) New variant and expression studies provide further insight into the genotype–phenotype correlation in YAP1-related developmental eye disorders. Sci Rep 7:7975. https://doi.org/10.1038/s41598-017-08397-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn D, Prescott T, Houge G, Braekke K, Rosendahl K, Nishimura G, FitzPatrick DR, Spranger J (2015) A novel oculo-skeletal syndrome with intellectual disability caused by a particular MAB21L2 mutation. Eur J Med Genet 58:387–391. https://doi.org/10.1016/j.ejmg.2015.06.003

    Article  PubMed  Google Scholar 

  • Huang X, Xiao X, Jia X, Li S, Li M, Guo X, Liu X, Zhang Q (2015) Mutation analysis of the genes associated with anterior segment dysgenesis, microcornea and microphthalmia in 257 patients with glaucoma. Int J Mol Med 36:1111–1117. https://doi.org/10.3892/ijmm.2015.2325

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Huang ZQ, Lin D, Dai ML, Wang QF, Chen ZJ, Jin ZB, Wang Y (2017) Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Sci Rep 7:9064. https://doi.org/10.1038/s41598-017-09276-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue M, Kamachi Y, Matsunami H, Imada K, Uchikawa M, Kondoh H (2007) PAX6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells 12:1049–1061. https://doi.org/10.1111/j.1365-2443.2007.01114.x

    Article  CAS  PubMed  Google Scholar 

  • Iseri SU, Osborne RJ, Farrall M, Wyatt AW, Mirza G, Nurnberg G, Kluck C, Herbert H, Martin A, Hussain MS, Collin JR, Lathrop M, Nurnberg P, Ragoussis J, Ragge NK (2009) Seeing clearly: the dominant and recessive nature of FOXE3 in eye developmental anomalies. Hum Mutat 30:1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Iseri SU, Wyatt AW, Nurnberg G, Kluck C, Nurnberg P, Holder GE, Blair E, Salt A, Ragge NK (2010) Use of genome-wide SNP homozygosity mapping in small pedigrees to identify new mutations in VSX2 causing recessive microphthalmia and a semidominant inner retinal dystrophy. Hum Genet 128:51–60. https://doi.org/10.1007/s00439-010-0823-6

    Article  CAS  PubMed  Google Scholar 

  • Islam L, Kelberman D, Williamson L, Lewis N, Glindzicz MB, Nischal KK, Sowden JC (2015) Functional analysis of FOXE3 mutations causing dominant and recessive ocular anterior segment disease. Hum Mutat 36:296–300. https://doi.org/10.1002/humu.22741

    Article  CAS  PubMed  Google Scholar 

  • Jamieson RV, Perveen R, Kerr B, Carette M, Yardley J, Heon E, Wirth MG, van Heyningen V, Donnai D, Munier F, Black GC (2002) Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet 11:33–42

    Article  CAS  PubMed  Google Scholar 

  • Jimenez NL, Flannick J, Yahyavi M, Li J, Bardakjian T, Tonkin L, Schneider A, Sherr EH, Slavotinek AM (2011) Targeted ‘next-generation’ sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations. BMC Med Genet 12:172

    Article  CAS  PubMed  Google Scholar 

  • Kallen B, Tornqvist K (2005) The epidemiology of anophthalmia and microphthalmia in Sweden. Eur J Epidemiol 20:345–350

    Article  PubMed  Google Scholar 

  • Kallen B, Robert E, Harris J (1996) The descriptive epidemiology of anophthalmia and microphthalmia. Int J Epidemiol 25:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Kameya S, Hawes NL, Chang B, Heckenlively JR, Naggert JK, Nishina PM (2002) Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum Mol Genet 11:1879–1886

    Article  CAS  PubMed  Google Scholar 

  • Kannabiran C, Singh H, Sahini N, Jalali S, Mohan G (2012) Mutations in TULP1, NR2E3, and MFRP genes in Indian families with autosomal recessive retinitis pigmentosa. Mol Vis 18:1165–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka K (2007) Multiple mechanisms and functions of maf transcription factors in the regulation of tissue-specific genes. J Biochem 141:775–781. https://doi.org/10.1093/jb/mvm105

    Article  CAS  PubMed  Google Scholar 

  • Katoh M (2001) Molecular cloning and characterization of MFRP, a novel gene encoding a membrane-type Frizzled-related protein. Biochem Biophys Res Commun 282:116–123. https://doi.org/10.1006/bbrc.2001.4551

    Article  CAS  PubMed  Google Scholar 

  • Kava MP, Nagarajan L (2009) Microphthalmia and microcornea: in congenital cytomegalovirus. Indian J Ophthalmol 57:323

    Article  PubMed  Google Scholar 

  • Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825. https://doi.org/10.1126/science.1136244

    Article  CAS  PubMed  Google Scholar 

  • Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, Chong WK, Kirk JM, Achermann JC, Ross R, Carmignac D, Lovell-Badge R, Robinson IC, Dattani MT (2006) Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Investig 116:2442–2455

    CAS  PubMed  Google Scholar 

  • Kelberman D, Islam L, Lakowski J, Bacchelli C, Chanudet E, Lescai F, Patel A, Stupka E, Buck A, Wolf S, Beales PL, Jacques TS, Bitner-Glindzicz M, Liasis A, Lehmann OJ, Kohlhase J, Nischal KK, Sowden JC (2014) Mutation of SALL2 causes recessive ocular coloboma in humans and mice. Hum Mol Genet 23:2511–2526. https://doi.org/10.1093/hmg/ddt643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keser V, Khan A, Siddiqui S, Lopez I, Ren H, Qamar R, Nadaf J, Majewski J, Chen R, Koenekoop RK (2017) The genetic causes of nonsyndromic congenital retinal detachment: a genetic and phenotypic study of Pakistani families. Investig Ophthalmol Vis Sci 58:1028–1036. https://doi.org/10.1167/iovs.16-20281

    Article  CAS  Google Scholar 

  • Khan K, Rudkin A, Parry DA, Burdon KP, McKibbin M, Logan CV, Abdelhamed ZI, Muecke JS, Fernandez-Fuentes N, Laurie KJ, Shires M, Fogarty R, Carr IM, Poulter JA, Morgan JE, Mohamed MD, Jafri H, Raashid Y, Meng N, Piseth H, Toomes C, Casson RJ, Taylor GR, Hammerton M, Sheridan E, Johnson CA, Inglehearn CF, Craig JE, Ali M (2011) Homozygous mutations in PXDN cause congenital cataract, corneal opacity, and developmental glaucoma. Am J Hum Genet 89:464–473. https://doi.org/10.1016/j.ajhg.2011.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan K, Logan CV, McKibbin M, Sheridan E, Elcioglu NH, Yenice O, Parry DA, Fernandez-Fuentes N, Abdelhamed ZI, Al-Maskari A, Poulter JA, Mohamed MD, Carr IM, Morgan JE, Jafri H, Raashid Y, Taylor GR, Johnson CA, Inglehearn CF, Toomes C, Ali M (2012) Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects. Hum Mol Genet 21:776–783

    Article  CAS  PubMed  Google Scholar 

  • Khan AO, Aldahmesh MA, Noor J, Salem A, Alkuraya FS (2013) Lens subluxation and retinal dysfunction in a girl with homozygous VSX2 mutation. Ophthalmic Genet 36:8–13

    Article  CAS  PubMed  Google Scholar 

  • Khan SY, Vasanth S, Kabir F, Gottsch JD, Khan AO, Chaerkady R, Lee MC, Leitch CC, Ma Z, Laux J, Villasmil R, Khan SN, Riazuddin S, Akram J, Cole RN, Talbot CC, Pourmand N, Zaghloul NA, Hejtmancik JF, Riazuddin SA (2016) FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nat Commun 7:10953. https://doi.org/10.1038/ncomms10953

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan KN, Carss K, Raymond FL, Islam F, Nihr BioResource-Rare Diseases C, Moore AT, Michaelides M, Arno G (2017) Vitamin A deficiency due to bi-allelic mutation of RBP4: there’s more to it than meets the eye. Ophthalmic Genet 38:465–466. https://doi.org/10.1080/13816810.2016.1227453

    Article  CAS  PubMed  Google Scholar 

  • Khorram D, Choi M, Roos BR, Stone EM, Kopel T, Allen R, Alward WL, Scheetz TE, Fingert JH (2015) Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos. Mol Vis 21:1017–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Min KW, Kang KH, Lee EJ, Kim HT, Moon K, Choi J, Le D, Lee SH, Kim JW (2014) Regulation of retinal axon growth by secreted Vax1 homeodomain protein. Elife 3:e02671. https://doi.org/10.7554/eLife.02671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG, Fuchs S, Montgomery T, Rösler B (2005) SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders. Hum Mutat 26:176–183

    Article  CAS  PubMed  Google Scholar 

  • Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278:33334–33341. https://doi.org/10.1074/jbc.M305597200

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Matsushita I, Tahira T, Uchio E, Kusaka S (2016) Mutations in ATOH7 gene in patients with nonsyndromic congenital retinal nonattachment and familial exudative vitreoretinopathy. Ophthalmic Genet 37:462–464. https://doi.org/10.3109/13816810.2015.1120316

    Article  PubMed  Google Scholar 

  • Kudoh T, Dawid IB (2001) Zebrafish mab21l2 is specifically expressed in the presumptive eye and tectum from early somitogenesis onwards. Mech Dev 109:95–98

    Article  CAS  PubMed  Google Scholar 

  • Kumar JP (2009) The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci 66:565–583. https://doi.org/10.1007/s00018-008-8335-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW Jr, Lott IT et al (1985) Retinoic acid embryopathy. N Engl J Med 313:837–841

    Article  CAS  PubMed  Google Scholar 

  • Landgren H, Blixt A, Carlsson P (2008) Persistent FoxE3 expression blocks cytoskeletal remodeling and organelle degradation during lens fiber differentiation. Investig Ophthalmol Vis Sci 49:4269–4277. https://doi.org/10.1167/iovs.08-2243

    Article  Google Scholar 

  • Lau GT, Wong OG, Chan PM, Kok KH, Wong RL, Chin KT, Lin MC, Kung HF, Chow KL (2001) Embryonic XMab21l2 expression is required for gastrulation and subsequent neural development. Biochem Biophys Res Commun 280:1378–1384. https://doi.org/10.1006/bbrc.2001.4290

    Article  CAS  PubMed  Google Scholar 

  • Leamey CA, Merlin S, Lattouf P, Sawatari A, Zhou X, Demel N, Glendining KA, Oohashi T, Sur M, Fassler R (2007) Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol 5:e241. https://doi.org/10.1371/journal.pbio.0050241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemyre E, Lemieux N, Decarie JC, Lambert M (1998) Del(14)(q22.1q23.2) in a patient with anophthalmia and pituitary hypoplasia. Am J Med Genet 77:162–165

    Article  CAS  PubMed  Google Scholar 

  • Lequeux L, Rio M, Vigouroux A, Titeux M, Etchevers H, Malecaze F, Chassaing N, Calvas P (2008) Confirmation of RAX gene involvement in human anophthalmia. Clin Genet 74:392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Harlalka GV, Hameed A, Reham HM, Yasin M, Muhammad N, Khan S, Baple EL, Crosby AH, Saleha S (2018) Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/microphthalmia, and review of the literature. BMC Med Genet 19:160. https://doi.org/10.1186/s12881-018-0678-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR (1994) Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13:377–393

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li Y, Hung KK, Wang N, Wang C, Chen X, Sheng D, Fu X, See K, Foo JN, Low H, Liany H, Irwan ID, Liu J, Yang B, Chen M, Yu Y, Yu G, Niu G, You J, Zhou Y, Ma S, Wang T, Yan X, Goh BK, Common JE, Lane BE, Sun Y, Zhou G, Lu X, Wang Z, Tian H, Cao Y, Chen S, Liu Q, Liu J, Zhang F (2014) Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria. PLoS One 9:e87250. https://doi.org/10.1371/journal.pone.0087250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Liu H, Tang J, Lin Q, Sun Y, Wang C, Yang H, Khan MR, Peerbux MW, Ahmad S, Bukhari I, Zhu J (2017a) Whole exome sequencing identifies a novel mutation in the PITX3 gene, causing autosomal dominant congenital cataracts in a Chinese family. Ann Clin Lab Sci 47:92–95

    CAS  PubMed  Google Scholar 

  • Liu Y, Lu Y, Liu S, Liao S (2017b) Novel compound heterozygous mutations of ALDH1A3 contribute to anophthalmia in a non-consanguineous Chinese family. Genet Mol Biol 40:430–435. https://doi.org/10.1590/1678-4685-GMB-2016-0120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente-Gonzalez S, Peralta-Calvo J, Abelairas-Gomez JM (2011) Congenital anophthalmia and microphthalmia: epidemiology and orbitofacial rehabilitation. Clin Ophthalmol 5:1759–1765. https://doi.org/10.2147/OPTH.S27189

    Article  PubMed  PubMed Central  Google Scholar 

  • London NJ, Kessler P, Williams B, Pauer GJ, Hagstrom SA, Traboulsi EI (2009) Sequence alterations in RX in patients with microphthalmia, anophthalmia, and coloboma. Mol Vis 15:162–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loosli F, Staub W, Finger-Baier KC, Ober EA, Verkade H, Wittbrodt J, Baier H (2003) Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep 4:894–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry RB, Kohut R, Sibbald B, Rouleau J (2005) Anophthalmia and microphthalmia in the Alberta Congenital Anomalies Surveillance System. Can J Ophthalmol 40:38–44

    Article  PubMed  Google Scholar 

  • Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820

    Article  CAS  PubMed  Google Scholar 

  • Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, Cheng A, Billson FA, Martin F, Fraser C, Mowat D, Smith J, Christodoulou J, Flaherty M, Bennetts B, Jamieson RV (2016) Sporadic and familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat 37:371–384. https://doi.org/10.1002/humu.22948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma AS, Grigg JR, Prokudin I, Flaherty M, Bennetts B, Jamieson RV (2018) New mutations in GJA8 expand the phenotype to include total sclerocornea. Clin Genet 93:155–159. https://doi.org/10.1111/cge.13045

    Article  CAS  PubMed  Google Scholar 

  • Mann I (1953) The developmental basis of eye malformations. JB Lippincott, Philadelphia

    Google Scholar 

  • Marcadier JL, Mears AJ, Woods EA, Fisher J, Airheart C, Qin W, Beaulieu CL, Dyment DA, Innes AM, Curry CJ, Care4Rare Canada Consortium (2016) A novel mutation in two Hmong families broadens the range of STRA6-related malformations to include contractures and camptodactyly. Am J Med Genet A 170A:11–18. https://doi.org/10.1002/ajmg.a.37389

    Article  CAS  PubMed  Google Scholar 

  • Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387:603–607

    Article  CAS  PubMed  Google Scholar 

  • Matias-Perez D, Garcia-Montano LA, Cruz-Aguilar M, Garcia-Montalvo IA, Nava-Valdez J, Barragan-Arevalo T, Villanueva-Mendoza C, Villarroel CE, Guadarrama-Vallejo C, la Cruz RV, Chacon-Camacho O, Zenteno JC (2018) Identification of novel pathogenic variants and novel gene-phenotype correlations in Mexican subjects with microphthalmia and/or anophthalmia by next-generation sequencing. J Hum Genet 63:1169–1180. https://doi.org/10.1038/s10038-018-0504-1

    Article  CAS  PubMed  Google Scholar 

  • Matsushita I, Kondo H, Tawara A (2012) Novel compound heterozygous mutations in the MFRP gene in a Japanese patient with posterior microphthalmos. Jpn J Ophthalmol 56:396–400. https://doi.org/10.1007/s10384-012-0145-4

    Article  PubMed  Google Scholar 

  • Medina-Trillo C, Aroca-Aguilar JD, Mendez-Hernandez CD, Morales L, Garcia-Anton M, Garcia-Feijoo J, Escribano J (2016) Rare FOXC1 variants in congenital glaucoma: identification of translation regulatory sequences. Eur J Hum Genet 24:672–680. https://doi.org/10.1038/ejhg.2015.169

    Article  CAS  PubMed  Google Scholar 

  • Micheal S, Siddiqui SN, Zafar SN, Iqbal A, Khan MI, den Hollander AI (2016) Identification of novel variants in LTBP2 and PXDN using whole-exome sequencing in developmental and congenital glaucoma. PLoS One 11:e0159259. https://doi.org/10.1371/journal.pone.0159259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ, Bader JR, Besharse JC, Wilson SW, Link BA (2015) Yap and Taz regulate retinal pigment epithelial cell fate. Development 142:3021–3032. https://doi.org/10.1242/dev.119008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihelec M, Abraham P, Gibson K, Krowka R, Susman R, Storen R, Chen Y, Donald J, Tam PP, Grigg JR, Flaherty M, Gole GA, Jamieson RV (2009) Novel SOX2 partner-factor domain mutation in a four-generation family. Eur J Hum Genet 17:1417–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M, Stratton RF, Sujansky E, Bale SJ, Muenke M (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:297–301. https://doi.org/10.1007/s00439-002-0695-5

    Article  CAS  PubMed  Google Scholar 

  • Morrison D, FitzPatrick D, Hanson I, Williamson K, van Heyningen V, Fleck B, Jones I, Chalmers J, Campbell H (2002) National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet 39:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mory A, Ruiz FX, Dagan E, Yakovtseva EA, Kurolap A, Pares X, Farres J, Gershoni-Baruch R (2014) A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred. Eur J Hum Genet 22:419–422

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Sergouniotis PI, Mackay DS, Day AC, Wright G, Devery S, Leroy BP, Robson AG, Holder GE, Li Z, Webster AR (2010) A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy. Mol Vis 16:540–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair KS, Hmani-Aifa M, Ali Z, Kearney AL, Ben Salem S, Macalinao DG, Cosma IM, Bouassida W, Hakim B, Benzina Z, Soto I, Soderkvist P, Howell GR, Smith RS, Ayadi H, John SW (2011) Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. Nat Genet 43:579–584. https://doi.org/10.1038/ng.813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng WY, Pasutto F, Bardakjian TM, Wilson MJ, Watson G, Schneider A, Mackey DA, Grigg JR, Zenker M, Jamieson RV (2013) A puzzle over several decades: eye anomalies with FRAS1 and STRA6 mutations in the same family. Clin Genet 83:162–168. https://doi.org/10.1111/j.1399-0004.2012.01851.x

    Article  CAS  PubMed  Google Scholar 

  • Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza MT, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock SR, Gillessen-Kaesbach G, Palleschi A, Campeau PM, Lee BH, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M (2015) Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a Down syndrome-like facies. Am J Hum Genet 96:816–825. https://doi.org/10.1016/j.ajhg.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowilaty SR, Khan AO, Aldahmesh MA, Tabbara KF, Al-Amri A, Alkuraya FS (2013) Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. Am J Ophthalmol 155:361–372 e7. https://doi.org/10.1016/j.ajo.2012.08.016

    Article  PubMed  Google Scholar 

  • Oatts JT, Hull S, Michaelides M, Arno G, Webster AR, Moore AT (2017) Novel heterozygous mutation in YAP1 in a family with isolated ocular colobomas. Ophthalmic Genet 38:281–283. https://doi.org/10.1080/13816810.2016.1188122

    Article  PubMed  Google Scholar 

  • Ormestad M, Blixt A, Churchill A, Martinsson T, Enerback S, Carlsson P (2002) Foxe3 haploinsufficiency in mice: a model for Peters’ anomaly. Investig Ophthalmol Vis Sci 43:1350–1357

    Google Scholar 

  • Orr A, Dube MP, Zenteno JC, Jiang H, Asselin G, Evans SC, Caqueret A, Lakosha H, Letourneau L, Marcadier J, Matsuoka M, Macgillivray C, Nightingale M, Papillon-Cavanagh S, Perry S, Provost S, Ludman M, Guernsey DL, Samuels ME (2011) Mutations in a novel serine protease PRSS56 in families with nanophthalmos. Mol Vis 17:1850–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pantoja-Melendez C, Ali M, Zenteno JC (2013) An epidemiological investigation of a Forkhead box protein E3 founder mutation underlying the high frequency of sclerocornea, aphakia, and microphthalmia in a Mexican village. Mol Vis 19:1866–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, Fitzpatrick DR, Nurnberg G, Brasch F, Schirmer-Zimmermann H, Tolmie JL, Chitayat D, Houge G, Fernandez-Martinez L, Keating S, Mortier G, Hennekam RC, von der Wense A, Slavotinek A, Meinecke P, Bitoun P, Becker C, Nurnberg P, Reis A, Rauch A (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 80:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patat O, van Ravenswaaij-Arts CMA, Tantau J, Corsten-Janssen N, van Tintelen JP, Dijkhuizen T, Kaplan J, Chassaing N (2013) Otocephaly–dysgnathia complex: description of four cases and confirmation of the role of OTX2. Mol Syndromol 4:302–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Khan AO, Alsahli S, Abdel-Salam G, Nowilaty SR, Mansour AM, Nabil A, Al-Owain M, Sogati S, Salih MA, Kamal AM, Alsharif H, Alsaif HS, Alzahrani SS, Abdulwahab F, Ibrahim N, Hashem M, Faquih T, Shah ZA, Abouelhoda M, Monies D, Dasouki M, Shaheen R, Wakil SM, Aldahmesh MA, Alkuraya FS (2018) Genetic investigation of 93 families with microphthalmia or posterior microphthalmos. Clin Genet 93:1210–1222. https://doi.org/10.1111/cge.13239

    Article  CAS  PubMed  Google Scholar 

  • Perveen R, Favor J, Jamieson RV, Ray DW, Black GC (2007) A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation. Hum Mol Genet 16:1030–1038. https://doi.org/10.1093/hmg/ddm048

    Article  CAS  PubMed  Google Scholar 

  • Plaisancie J, Bremond-Gignac D, Demeer B, Gaston V, Verloes A, Fares-Taie L, Gerber S, Rozet JM, Calvas P, Chassaing N (2016a) Incomplete penetrance of biallelic ALDH1A3 mutations. Eur J Med Genet 59:215–218. https://doi.org/10.1016/j.ejmg.2016.02.004

    Article  PubMed  Google Scholar 

  • Plaisancie J, Calvas P, Chassaing N (2016b) Genetic Advances in Microphthalmia. J Pediatr Genet 5:184–188. https://doi.org/10.1055/s-0036-1592350

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaisancie J, Ragge NK, Dollfus H, Kaplan J, Lehalle D, Francannet C, Morin G, Colineaux H, Calvas P, Chassaing N (2018a) FOXE3 mutations: genotype–phenotype correlations. Clin Genet 93:837–845. https://doi.org/10.1111/cge.13177

    Article  CAS  PubMed  Google Scholar 

  • Plaisancie J, Tarilonte M, Ramos P, Jeanton-Scaramouche C, Gaston V, Dollfus H, Aguilera D, Kaplan J, Fares-Taie L, Blanco-Kelly F, Villaverde C, Francannet C, Goldenberg A, Arroyo I, Rozet JM, Ayuso C, Chassaing N, Calvas P, Corton M (2018b) Implication of non-coding PAX6 mutations in aniridia. Hum Genet 137:831–846. https://doi.org/10.1007/s00439-018-1940-x

    Article  CAS  PubMed  Google Scholar 

  • Platzer K, Huning I, Obieglo C, Schwarzmayr T, Gabriel R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ (2014) Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures. Am J Med Genet A 164A:1976–1980. https://doi.org/10.1002/ajmg.a.36592

    Article  CAS  PubMed  Google Scholar 

  • Prasov L, Masud T, Khaliq S, Mehdi SQ, Abid A, Oliver ER, Silva ED, Lewanda A, Brodsky MC, Borchert M, Kelberman D, Sowden JC, Dattani MT, Glaser T (2012) ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous. Hum Mol Genet 21:3681–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokudin I, Simons C, Grigg JR, Storen R, Kumar V, Phua ZY, Smith J, Flaherty M, Davila S, Jamieson RV (2014) Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1. Eur J Hum Genet 22:907–915. https://doi.org/10.1038/ejhg.2013.268

    Article  CAS  PubMed  Google Scholar 

  • Raca G, Jackson CA, Kucinskas L, Warman B, Shieh JT, Schneider A, Bardakjian TM, Schimmenti LA (2011) Array comparative genomic hybridization analysis in patients with anophthalmia, microphthalmia, and coloboma. Genet Med 13:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragge NK, Brown AG, Poloschek CM, Lorenz B, Henderson RA, Clarke MP, Russell-Eggitt I, Fielder A, Gerrelli D, Martinez-Barbera JP, Ruddle P, Hurst J, Collin JR, Salt A, Cooper ST, Thompson PJ, Sisodiya SM, Williamson KA, Fitzpatrick DR, van Heyningen V, Hanson IM (2005a) Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet 76:1008–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de Sanctis U, Salt A, Collin JR, Vivian AJ, Free SL, Thompson P, Williamson KA, Sisodiya SM, van Heyningen V, Fitzpatrick DR (2005b) SOX2 anophthalmia syndrome. Am J Med Genet A 135:1–7 (discussion 8)

    Article  PubMed  Google Scholar 

  • Ragge NK, Salt A, Collin JR, Michalski A, Farndon PA (2005c) Gorlin syndrome: the PTCH gene links ocular developmental defects and tumour formation. Br J Ophthalmol 89:988–991. https://doi.org/10.1136/bjo.2004.061390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragge NK, Subak-Sharpe ID, Collin JR (2007) A practical guide to the management of anophthalmia and microphthalmia. Eye (Lond) 21:1290–1300. https://doi.org/10.1038/sj.eye.6702858

    Article  CAS  Google Scholar 

  • Ragge NK, Quaghebeur G, Stewart H (2013) SOX2 anophthalmia syndrome in adulthood - a neurodegenerative picture? Clin Genet 83:482–484. https://doi.org/10.1111/j.1399-0004.2012.01922.x

    Article  CAS  PubMed  Google Scholar 

  • Rainger J, Pehlivan D, Johansson S, Bengani H, Sanchez-Pulido L, Williamson KA, Ture M, Barker H, Rosendahl K, Spranger J, Horn D, Meynert A, Floyd JA, Prescott T, Anderson CA, Rainger JK, Karaca E, Gonzaga-Jauregui C, Jhangiani S, Muzny DM, Seawright A, Soares DC, Kharbanda M, Murday V, Finch A, Mendelian G, Gibbs RA, van Heyningen V, Taylor MS, Yakut T, Knappskog PM, Hurles ME, Ponting CP, Lupski JR, Houge G, FitzPatrick DR, Uk10K, Baylor-Hopkins Center for Mendelian Genomics (2014) Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am J Hum Genet 94:915–923. https://doi.org/10.1016/j.ajhg.2014.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravine D, Ragge NK, Stephens D, Oldridge M, Wilkie AO (1997) Dominant coloboma-microphthalmos syndrome associated with sensorineural hearing loss, hematuria, and cleft lip/palate. Am J Med Genet 72:227–236

    Article  CAS  PubMed  Google Scholar 

  • Reis LM, Tyler RC, Schneider A, Bardakjian T, Stoler JM, Melancon SB, Semina EV (2010) FOXE3 plays a significant role in autosomal recessive microphthalmia. Am J Med Genet A 152A:582–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Reis LM, Khan A, Kariminejad A, Ebadi F, Tyler RC, Semina EV (2011a) VSX2 mutations in autosomal recessive microphthalmia. Mol Vis 17:2527–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reis LM, Tyler RC, Schilter KF, Abdul-Rahman O, Innis JW, Kozel BA, Schneider AS, Bardakjian TM, Lose EJ, Martin DM, Broeckel U, Semina EV (2011b) BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome. Hum Genet 130:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renwick JH, Lawler SD (1963) Probable linkage between a congenital cataract locus and the duffy blood group locus. Ann Hum Genet 27:67–84

    Article  CAS  PubMed  Google Scholar 

  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  • Riera M, Wert A, Nieto I, Pomares E (2017) Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns. Mol Genet Genomic Med 5:709–719. https://doi.org/10.1002/mgg3.329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roos L, Fang M, Dali CI, Jensen H, Christoffersen N, Wu B, Zhang J, Xu R, Harris P, Xu X, Gronskov K, Tumer Z (2014) A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia. Clin Genet 86:276–281

    Article  CAS  PubMed  Google Scholar 

  • Roos L, Jensen H, Gronskov K, Holst R, Tumer Z (2016) Congenital microphthalmia, anophthalmia and coloboma among live births in Denmark. Ophthalmic Epidemiol 23:324–330. https://doi.org/10.1080/09286586.2016.1213859

    Article  PubMed  Google Scholar 

  • Saboo US, Penke D, Mahindrakar A, Uddaraju M, Sankurathri C, Gong X, Xing C, Mootha VV (2017) Exome sequencing reveals novel homozygous FOXE3 mutation in microphthalmos with staphylomatous malformation. Ophthalmic Genet 38:295–297. https://doi.org/10.1080/13816810.2016.1217549

    Article  PubMed  Google Scholar 

  • Said MB, Chouchene E, Salem SB, Daoud K, Largueche L, Bouassida W, Benzina Z, Ayadi H, Soderkvist P, Matri L, Hmani-Aifa M (2013) Posterior microphthalmia and nanophthalmia in Tunisia caused by a founder c.1059_1066insC mutation of the PRSS56 gene. Gene 528:288–294. https://doi.org/10.1016/j.gene.2013.06.045

    Article  CAS  PubMed  Google Scholar 

  • Saison C, Helias V, Peyrard T, Merad L, Cartron JP, Arnaud L (2013) The ABCB6 mutation p.Arg192Trp is a recessive mutation causing the Lan− blood type. Vox Sang 104:159–165. https://doi.org/10.1111/j.1423-0410.2012.01650.x

    Article  CAS  PubMed  Google Scholar 

  • Salih MA, Tzschach A, Oystreck DT, Hassan HH, AlDrees A, Elmalik SA, El Khashab HY, Wienker TF, Abu-Amero KK, Bosley TM (2013) A newly recognized autosomal recessive syndrome affecting neurologic function and vision. Am J Med Genet A 161:1207–1213

    Article  CAS  Google Scholar 

  • Salt A, Sargent J (2014) Common visual problems in children with disability. Arch Dis Child 99:1163–1168. https://doi.org/10.1136/archdischild-2013-305267

    Article  PubMed  PubMed Central  Google Scholar 

  • Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM, Semina EV (2011) OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet 79:158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilter KF, Reis LM, Schneider A, Bardakjian TM, Abdul-Rahman O, Kozel BA, Zimmerman HH, Broeckel U, Semina EV (2013) Whole-genome copy number variation analysis in anophthalmia and microphthalmia. Clin Genet 84:473–481. https://doi.org/10.1111/cge.12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Sidor B, Szymanska K, Williamson K, van Heyningen V, Roszkowski T, Wierzba-Bobrowicz T, Zaremba J (2009) Malformations of the brain in two fetuses with a compound heterozygosity for two PAX6 mutations. Folia Neuropathol 47:372–382

    PubMed  Google Scholar 

  • Schneider A, Bardakjian T, Reis LM, Tyler RC, Semina EV (2009) Novel SOX2 mutations and genotype–phenotype correlation in anophthalmia and microphthalmia. Am J Med Genet A 149A:2706–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeliger MW, Biesalski HK, Wissinger B, Gollnick H, Gielen S, Frank J, Beck S, Zrenner E (1999) Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Investig Ophthalmol Vis Sci 40:3–11

    CAS  Google Scholar 

  • Seller MJ, Davis TB, Fear CN, Flinter FA, Ellis I, Gibson AG (1996) Two sibs with anophthalmia and pulmonary hypoplasia (the Matthew-Wood syndrome). Am J Med Genet 62:227–229. https://doi.org/10.1002/(SICI)1096-8628(19960329)62:3%3C227::AID-AJMG5%3E3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  • Semerci CN, Kalay E, Yildirim C, Dincer T, Olmez A, Toraman B, Kocyigit A, Bulgu Y, Okur V, Satiroglu-Tufan L, Akarsu NA (2014) Novel splice-site and missense mutations in the ALDH1A3 gene underlying autosomal recessive anophthalmia/microphthalmia. Br J Ophthalmol 98:832–840. https://doi.org/10.1136/bjophthalmol-2013-304058

    Article  PubMed  Google Scholar 

  • Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WL, Reiter RS, Funkhauser C, Daack-Hirsch S, Murray JC (1998) A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 19:167–170. https://doi.org/10.1038/527

    Article  CAS  PubMed  Google Scholar 

  • Semina EV, Brownell I, Mintz-Hittner HA, Murray JC, Jamrich M (2001) Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet 10:231–236

    Article  CAS  PubMed  Google Scholar 

  • Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS, Basilico C, Mansukhani A (2013) SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep 3:2075–2087. https://doi.org/10.1016/j.celrep.2013.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serikaku MA, O’Tousa JE (1994) sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138:1137–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SP, Taylor AE, Sowden JC, Ragge N, Russell-Eggitt I, Rahi JS, Gilbert CE (2011a) Anophthalmos, microphthalmos, and Coloboma in the United kingdom: clinical features, results of investigations, and early management. Ophthalmology 119:362–368

    Article  PubMed  Google Scholar 

  • Shah SP, Taylor AE, Sowden JC, Ragge NK, Russell-Eggitt I, Rahi JS, Gilbert CE, Surveillance of Eye Anomalies Special Interest Group (2011b) Anophthalmos, microphthalmos, and typical coloboma in the United Kingdom: a prospective study of incidence and risk. Investig Ophthalmol Vis Sci 52:558–564. https://doi.org/10.1167/iovs.10-5263

    Article  Google Scholar 

  • Shi X, Luo Y, Howley S, Dzialo A, Foley S, Hyde DR, Vihtelic TS (2006) Zebrafish foxe3: roles in ocular lens morphogenesis through interaction with pitx3. Mech Dev 123:761–782. https://doi.org/10.1016/j.mod.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  • Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526–532. https://doi.org/10.1086/301762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shima H, Ishii A, Wada Y, Kizawa J, Yokoi T, Azuma N, Matsubara Y, Suzuki E, Nakamura A, Narumi S, Fukami M (2017) SOX2 nonsense mutation in a patient clinically diagnosed with non-syndromic hypogonadotropic hypogonadism. Endocr J 64:813–817. https://doi.org/10.1507/endocrj.EJ17-0078

    Article  PubMed  Google Scholar 

  • Slavotinek AM (2011) Eye development genes and known syndromes. Mol Genet Metab 104:448–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavotinek A (2018) Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia–microphthalmia. Hum Genet. https://doi.org/10.1007/s00439-018-1949-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Slavotinek AM, Chao R, Vacik T, Yahyavi M, Abouzeid H, Bardakjian T, Schneider A, Shaw G, Sherr EH, Lemke G, Youssef M, Schorderet DF (2012) VAX1 mutation associated with microphthalmia, corpus callosum agenesis, and orofacial clefting: the first description of a VAX1 phenotype in humans. Hum Mutat 33:364–368

    Article  CAS  PubMed  Google Scholar 

  • Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D, Umeda K, Lao R, Tang PL, Wan E, Madireddy L, Lyalina S, Mendelsohn BA, Dugan S, Tirch J, Tischler R, Harris J, Clark MJ, Chervitz S, Patwardhan A, West JM, Ursell P, de Alba Campomanes A, Schneider A, Kwok PY, Baranzini S, Chen RO (2015) Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet 88:468–473. https://doi.org/10.1111/cge.12543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small KW, DeLuca AP, Whitmore SS, Rosenberg T, Silva-Garcia R, Udar N, Puech B, Garcia CA, Rice TA, Fishman GA, Héon E, Folk JC, Streb LM, Haas CM, Wiley LA, Scheetz TE, Fingert JH, Mullins RF, Tucker BA, Stone EM (2016) North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13. Ophthalmology 123:9–18. https://doi.org/10.1016/j.ophtha.2015.10.006

    Article  PubMed  Google Scholar 

  • Solomon BD, Pineda-Alvarez DE, Balog JZ, Hadley D, Gropman AL, Nandagopal R, Han JC, Hahn JS, Blain D, Brooks B, Muenke M (2009) Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet A 149A:2543–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somashekar PH, Shukla A, Girisha KM (2017) Intrafamilial variability in syndromic microphthalmia type 5 caused by a novel variation in OTX2. Ophthalmic Genet 38:533–536. https://doi.org/10.1080/13816810.2017.1301967

    Article  CAS  PubMed  Google Scholar 

  • Spagnolo A, Bianchi F, Calabro A, Calzolari E, Clementi M, Mastroiacovo P, Meli P, Petrelli G, Tenconi R (1994) Anophthalmia and benomyl in Italy: a multicenter study based on 940,615 newborns. Reprod Toxicol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Srour M, Chitayat D, Caron V, Chassaing N, Bitoun P, Patry L, Cordier MP, Capo-Chichi JM, Francannet C, Calvas P, Ragge N, Dobrzeniecka S, Hamdan FF, Rouleau GA, Tremblay A, Michaud JL (2013) Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 93:765–772. https://doi.org/10.1016/j.ajhg.2013.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srour M, Caron V, Pearson T, Nielsen SB, Levesque S, Delrue MA, Becker TA, Hamdan FF, Kibar Z, Sattler SG, Schneider MC, Bitoun P, Chassaing N, Rosenfeld JA, Xia F, Desai S, Roeder E, Kimonis V, Schneider A, Littlejohn RO, Douzgou S, Tremblay A, Michaud JL (2016) Gain-of-function mutations in RARB cause intellectual disability with progressive motor impairment. Hum Mutat 37:786–793. https://doi.org/10.1002/humu.23004

    Article  CAS  PubMed  Google Scholar 

  • Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stigloher C, Ninkovic J, Laplante M, Geling A, Tannhauser B, Topp S, Kikuta H, Becker TS, Houart C, Bally-Cuif L (2006) Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3. Development 133:2925–2935. https://doi.org/10.1242/dev.02450

    Article  CAS  PubMed  Google Scholar 

  • Stromland K (2004) Visual impairment and ocular abnormalities in children with fetal alcohol syndrome. Addict Biol 9:153–157 (discussion 159–60)

    Article  CAS  PubMed  Google Scholar 

  • Stromland K, Miller MT (1993) Thalidomide embryopathy: revisited 27 years later. Acta Ophthalmol (Copenh) 71:238–245

    Article  CAS  Google Scholar 

  • Stromland K, Miller M, Cook C (1991) Ocular teratology. Surv Ophthalmol 35:429–446

    Article  CAS  PubMed  Google Scholar 

  • Suhardjo, Utomo PT, Agni AN (2003) Clinical manifestations of ocular toxoplasmosis in Yogyakarta, Indonesia: a clinical review of 173 cases. Southeast Asian J Trop Med Public Health 34:291–297

    CAS  PubMed  Google Scholar 

  • Summers KM, Withers SJ, Gole GA, Piras S, Taylor PJ (2008) Anterior segment mesenchymal dysgenesis in a large Australian family is associated with the recurrent 17 bp duplication in PITX3. Mol Vis 14:2010–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Zhang Q (2015) Does the association between TMEM98 and nanophthalmos require further confirmation? JAMA Ophthalmol 133:358–359. https://doi.org/10.1001/jamaophthalmol.2014.4915

    Article  PubMed  Google Scholar 

  • Sundin OH (2005) The mouse’s eye and Mfrp: not quite human. Ophthalmic Genet 26:153–155. https://doi.org/10.1080/13816810500374359

    Article  PubMed  Google Scholar 

  • Sundin OH, Leppert GS, Silva ED, Yang JM, Dharmaraj S, Maumenee IH, Santos LC, Parsa CF, Traboulsi EI, Broman KW, Dibernardo C, Sunness JS, Toy J, Weinberg EM (2005) Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci USA 102:9553–9558. https://doi.org/10.1073/pnas.0501451102

    Article  CAS  PubMed  Google Scholar 

  • Tajima T, Ishizu K, Nakamura A (2013) Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol 22:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Take-uchi M, Clarke JD, Wilson SW (2003) Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development 130:955–968

    Article  CAS  PubMed  Google Scholar 

  • Temtamy SA, Salam MA, Aboul-Ezz EH, Hussein HA, Helmy SA, Shalash BA (1996) New autosomal recessive multiple congenital abnormalities/mental retardation syndrome with craniofacial dysmorphism absent corpus callosum, iris colobomas and connective tissue dysplasia. Clin Dysmorphol 5:231–240

    Article  CAS  PubMed  Google Scholar 

  • Tucker S, Jones B, Collin R (1996) Systemic anomalies in 77 patients with congenital anophthalmos or microphthalmos. Eye (Lond) 10(Pt 3):310–314. https://doi.org/10.1038/eye.1996.65

    Article  Google Scholar 

  • Tzoulaki I, White IM, Hanson IM (2005) PAX6 mutations: genotype–phenotype correlations. BMC Genet 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah E, Nadeem Saqib MA, Sajid S, Shah N, Zubair M, Khan MA, Ahmed I, Ali G, Dutta AK, Danda S, Lao R, Ling-Fung Tang P, Kwok PY, Ansar M, Slavotinek A (2016) Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp Eye Res 146:163–171. https://doi.org/10.1016/j.exer.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  • Ullah E, Wu D, Madireddy L, Lao R, Ling-Fung Tang P, Wan E, Bardakjian T, Kopinsky S, Kwok PY, Schneider A, Baranzini S, Ansar M, Slavotinek A (2017) Two missense mutations in SALL4 in a patient with microphthalmia, coloboma, and optic nerve hypoplasia. Ophthalmic Genet 38:371–375. https://doi.org/10.1080/13816810.2016.1217550

    Article  CAS  PubMed  Google Scholar 

  • Valleix S, Niel F, Nedelec B, Algros MP, Schwartz C, Delbosc B, Delpech M, Kantelip B (2006) Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. Am J Hum Genet 79:358–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velez G, Tsang SH, Tsai YT, Hsu CW, Gore A, Abdelhakim AH, Mahajan M, Silverman RH, Sparrow JR, Bassuk AG, Mahajan VB (2017) Gene therapy restores mfrp and corrects axial eye length. Sci Rep 7:16151. https://doi.org/10.1038/s41598-017-16275-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdin H, Sorokina EA, Meire F, Casteels I, de Ravel T, Semina EV, De Baere E (2014) Novel and recurrent PITX3 mutations in Belgian families with autosomal dominant congenital cataract and anterior segment dysgenesis have similar phenotypic and functional characteristics. Orphanet J Rare Dis 9:26. https://doi.org/10.1186/1750-1172-9-26

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma AS, Fitzpatrick DR (2007) Anophthalmia and microphthalmia. Orphanet J Rare Dis 2:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent MC, Pujo AL, Olivier D, Calvas P (2003) Screening for PAX6 gene mutations is consistent with haploinsufficiency as the main mechanism leading to various ocular defects. Eur J Hum Genet 11:163–169

    Article  CAS  PubMed  Google Scholar 

  • Volkmann BA, Zinkevich NS, Mustonen A, Schilter KF, Bosenko DV, Reis LM, Broeckel U, Link BA, Semina EV (2011) Potential novel mechanism for Axenfeld-Rieger syndrome: deletion of a distant region containing regulatory elements of PITX2. Investig Ophthalmol Vis Sci 52:1450–1459. https://doi.org/10.1167/iovs.10-6060

    Article  CAS  Google Scholar 

  • Voronina VA, Kozhemyakina EA, O’Kernick CM, Kahn ND, Wenger SL, Linberg JV, Schneider AS, Mathers PH (2004) Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum Mol Genet 13:315–322

    Article  CAS  PubMed  Google Scholar 

  • Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15:24–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Liang X, Yi J, Zhang Q (2008) Novel SOX2 mutation associated with ocular coloboma in a Chinese family. Arch Ophthalmol 126:709–713

    Article  CAS  PubMed  Google Scholar 

  • Wang L, He F, Bu J, Zhen Y, Liu X, Du W, Dong J, Cooney JD, Dubey SK, Shi Y, Gong B, Li J, McBride PF, Jia Y, Lu F, Soltis KA, Lin Y, Namburi P, Liang C, Sundaresan P, Paw BH, Li W, Li DY, Phillips JD, Yang Z (2012) ABCB6 mutations cause ocular coloboma. Am J Hum Genet 90:40–48. https://doi.org/10.1016/j.ajhg.2011.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg M (1993) Classification of microphthalmos and coloboma. J Med Genet 30:664–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward SJ, Morriss-Kay GM (1997) The functional basis of tissue-specific retinoic acid signalling in embryos. Semin Cell Dev Biol 8:429–435. https://doi.org/10.1006/scdb.1997.0166

    Article  CAS  PubMed  Google Scholar 

  • Ward SJ, Chambon P, Ong DE, Bavik C (1997) A retinol-binding protein receptor-mediated mechanism for uptake of vitamin A to postimplantation rat embryos. Biol Reprod 57:751–755

    Article  CAS  PubMed  Google Scholar 

  • Wasmann RA, Wassink-Ruiter JS, Sundin OH, Morales E, Verheij JB, Pott JW (2014) Novel membrane frizzled-related protein gene mutation as cause of posterior microphthalmia resulting in high hyperopia with macular folds. Acta Ophthalmol 92:276–281. https://doi.org/10.1111/aos.12105

    Article  CAS  PubMed  Google Scholar 

  • Wawersik S, Purcell P, Rauchman M, Dudley AT, Robertson EJ, Maas R (1999) BMP7 acts in murine lens placode development. Dev Biol 207:176–188. https://doi.org/10.1006/dbio.1998.9153

    Article  CAS  PubMed  Google Scholar 

  • Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, Knuppel T, Zurowska AM, Caldas-Alfonso A, Litwin M, Emre S, Ghiggeri GM, Bakkaloglu A, Mehls O, Antignac C, Network E, Schaefer F, Burdine RD (2008) SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 19:891–903. https://doi.org/10.1681/ASN.2006111282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, Keng WT, Sharkey FH, McGill N, Hill CJ, Schneider A, Messina M, Turnpenny PD, Fantes JA, van Heyningen V, FitzPatrick DR (2006) Mutations in SOX2 cause anophthalmia–esophageal–genital (AEG) syndrome. Hum Mol Genet 15:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Williamson KA, Rainger J, Floyd JA, Ansari M, Meynert A, Aldridge KV, Rainger JK, Anderson CA, Moore AT, Hurles ME, Clarke A, van Heyningen V, Verloes A, Taylor MS, Wilkie AO, Consortium UK, Fitzpatrick DR (2014) Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Am J Hum Genet 94:295–302. https://doi.org/10.1016/j.ajhg.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler S, Loosli F, Henrich T, Wakamatsu Y, Wittbrodt J (2000) The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development 127:1911–1919

    CAS  PubMed  Google Scholar 

  • Wong RL, Chow KL (2002) Depletion of Mab21l1 and Mab21l2 messages in mouse embryo arrests axial turning, and impairs notochord and neural tube differentiation. Teratology 65:70–77. https://doi.org/10.1002/tera.10018

    Article  CAS  PubMed  Google Scholar 

  • Wyatt AW, Ragge N (2009) MLGA: a cost-effective approach to the diagnosis of gene deletions in eye development anomalies. Mol Vis 15:1445–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt A, Bakrania P, Bunyan DJ, Osborne RJ, Crolla JA, Salt A, Ayuso C, Newbury-Ecob R, Abou-Rayyah Y, Collin JR, Robinson D, Ragge N (2008) Novel heterozygous OTX2 mutations and whole gene deletions in anophthalmia, microphthalmia and coloboma. Hum Mutat 29:E278–E283

    Article  PubMed  Google Scholar 

  • Wyatt AW, Osborne RJ, Stewart H, Ragge NK (2010) Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum Mutat 31:781–787

    Article  CAS  PubMed  Google Scholar 

  • Yahyavi M, Abouzeid H, Gawdat G, de Preux AS, Xiao T, Bardakjian T, Schneider A, Choi A, Jorgenson E, Baier H, El Sada M, Schorderet DF, Slavotinek AM (2013) ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 22:3250–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada R, Mizutani-Koseki Y, Hasegawa T, Osumi N, Koseki H, Takahashi N (2003) Cell-autonomous involvement of Mab21l1 is essential for lens placode development. Development 130:1759–1770

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Sabrautzki S, Horsch M, Fuchs H, Gailus-Durner V, Beckers J, Hrabe de Angelis M, Graw J (2014) Peroxidasin is essential for eye development in the mouse. Hum Mol Genet 23:5597–5614. https://doi.org/10.1093/hmg/ddu274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yariz KO, Sakalar YB, Jin X, Hertz J, Sener EF, Akay H, Ozbek MN, Farooq A, Goldberg J, Tekin M (2015) A homozygous SIX6 mutation is associated with optic disc anomalies and macular atrophy and reduces retinal ganglion cell differentiation. Clin Genet 87:192–195. https://doi.org/10.1111/cge.12374

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT, Drummond G, Walter MA, Underhill TM, Waskiewicz AJ, Lehmann OJ (2010) Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 19:287–298. https://doi.org/10.1093/hmg/ddp496

    Article  CAS  PubMed  Google Scholar 

  • Young TR, Leamey CA (2009) Teneurins: important regulators of neural circuitry. Int J Biochem Cell Biol 41:990–993. https://doi.org/10.1016/j.biocel.2008.06.014

    Article  CAS  PubMed  Google Scholar 

  • Zahrani F, Aldahmesh MA, Alshammari MJ, Al-Hazzaa SA, Alkuraya FS (2013) Mutations in c12orf57 cause a syndromic form of colobomatous microphthalmia. Am J Hum Genet 92:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zazo Seco C, Plaisancie J, Lupasco T, Michot C, Pechmeja J, Delanne J, Cottereau E, Ayuso C, Corton M, Calvas P, Ragge N, Chassaing N (2018) Identification of PITX3 mutations in individuals with various ocular developmental defects. Ophthalmic Genet 39:314–320. https://doi.org/10.1080/13816810.2018.1430243

    Article  CAS  PubMed  Google Scholar 

  • Zenteno JC, Perez-Cano HJ, Aguinaga M (2006) Anophthalmia–esophageal atresia syndrome caused by an SOX2 gene deletion in monozygotic twin brothers with markedly discordant phenotypes. Am J Med Genet A 140:1899–1903

    Article  CAS  PubMed  Google Scholar 

  • Zenteno JC, Buentello-Volante B, Quiroz-Gonzalez MA, Quiroz-Reyes MA (2009) Compound heterozygosity for a novel and a recurrent MFRP gene mutation in a family with the nanophthalmos-retinitis pigmentosa complex. Mol Vis 15:1794–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li S, Xiao X, Jia X, Wang P, Shen H, Guo X, Zhang Q (2009) Mutational screening of 10 genes in Chinese patients with microphthalmia and/or coloboma. Mol Vis 15:2911–2918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li D, Zhang J, Chen X, Huang M, Archacki S, Tian Y, Ren W, Mei A, Zhang Q, Fang M, Su Z, Yin Y, Liu D, Chen Y, Cui X, Li C, Yang H, Wang Q, Wang J, Liu M, Deng Y (2013) Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Investig Dermatol 133:2221–2228. https://doi.org/10.1038/jid.2013.145

    Article  CAS  PubMed  Google Scholar 

  • Zouvelou V, Luder HU, Mitsiadis TA, Graf D (2009) Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. J Exp Zool B Mol Dev Evol 312B:361–374. https://doi.org/10.1002/jez.b.21262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients and their families for their participation. We gratefully acknowledge Dr Dorine Bax for assisting with the coordination of the UK projects. Our work is supported by funding from Baillie Gifford, Microphthalmia, Anophthalmia, Coloboma Support (MACS) (http://www.macs.org.uk), Oxford Brookes University Central Research Fund, Fondation Maladies Rares, Fondation de France (Berthe Fouassier), Retina France, Rares Diseases Cohorts (RaDiCo) program funded by the French National Research Agency under the specific program “Investments for the Future” (Cohort grant agreement ANR-10-COHO-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola K. Ragge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all relevant subjects included in this paper. Patients shown in this review article were recruited as part of a national ‘Genetics of Eye and Brain anomalies’ study, approved by the Cambridge East Ethics Committee (04/Q0104/129). Additional informed consent for all individuals for whom identifying information is included in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaisancié, J., Ceroni, F., Holt, R. et al. Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 138, 799–830 (2019). https://doi.org/10.1007/s00439-019-01977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-01977-y

Navigation