Skip to main content

Advertisement

Log in

Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia–microphthalmia

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype–genotype correlations and shared pathways where relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abouzeid H, Youssef MA, ElShakankiri N, Hauser P, Munier FL, Schorderet DF (2009) PAX6 aniridia and interhemispheric brain anomalies. Mol Vis 15:2074–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abouzeid H, Boisset G, Favez T, Youssef M, Marzouk I, Shakankiry N et al (2011) Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet 88:92–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abouzeid H, Favez T, Schmid A, Agosti C, Youssef M, Marzouk I et al (2014) Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anopththalmin in consanguineous families. Hum Mutat 35:949–953

    Article  CAS  PubMed  Google Scholar 

  • Adolphs N, Klein M, Haberl EJ, Graul-Neumann L, Menneking H, Hoffmeister B (2011) Necrotizing soft tissue infection of the scalp after fronto-facial advancement by internal distraction in a 7-year old girl with Gorlin-Chaudhry-Moss syndrome—a case report. J Craniomaxillofac Surg 39:554–561

    Article  PubMed  Google Scholar 

  • Aldahmesh MA, Khan AO, Hijazi H, Alkuraya FS (2013) Mutations in ALDH1A3 cause microphthalmia. Clin Genet 84:128–131

    Article  CAS  PubMed  Google Scholar 

  • Al-Gazali LI, Mueller RF, Caine A, Antoniou A, McCartney A, Fitchett M, Dennis NR (1990) Two 46,XX,t(X;Y) females with linear skin defects and congenital microphthalmia: a new syndrome at Xp22.3. J Med Genet 27:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliferis K, Stoetzel C, Pelletier V, Hellé S, Angioï-Duprez K, Vigneron J et al (2011) A novel TFAP2A mutation in familial branchio-oculo-facial syndrome with predominant ocular phenotype. Ophthalmic Genet 32:250–255

    Article  CAS  PubMed  Google Scholar 

  • Arensdorf AM, Marada S, Ogden SK (2016) Smoothened regulation: a tale of two signals. Trends Pharmacol Sci 37:62–72

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi-Hoffnung L, Lebenthal Y, Wyatt AW, Ragge NK, Dateki S, Fukami M et al (2010) A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency. Hum Genet 127:721–729

    Article  PubMed  Google Scholar 

  • Bakrania P, Robinson DO, Bunyan DJ, Salt A, Martin A, Crolla JA et al (2007) SOX2 anophthalmia syndrome: 12 new cases demonstrating broader phenotype and high frequency of large gene deletions. Br J Ophthalmol 91:1471–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A et al (2008) Mutatios in BMP4 cause eye, brain, and digit developmental anomalis: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 82:304–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakrania P, Ugur Iseri SA, Wyatt AW, Bunyan DJ, Lam WW, Salt A et al (2010) Sonic hedgehog mutations are an uncommon cause of developmental eye anomalies. Am J Med Genet A 152A:1310–1313

    Article  CAS  PubMed  Google Scholar 

  • Bardakjian TM, Schneider A (2005) Association of anophthalmia and esophageal atresia: four new cases identified by the anophthalmia/microphthalmia clinical registry. Am J Med Genet A 132A:54–56

    Article  PubMed  Google Scholar 

  • Bardakjian T, Weiss A, Schneider A (2004) Microphthalmia/Anophthalmia/Coloboma spectrum. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) GeneReviews® [Internet]. University of Washington, Seattle, WA, pp 1993–2018 (updated 2015 Jul 9)

    Google Scholar 

  • Black GC, Mazerolle CJ, Wang Y, Campsall KD, Petrin D, Leonard BC et al (2003) Abnormalities of the vitreoretinal interface caused by dysregulated Hedgehog signaling during retinal development. Hum Mol Genet 12:3269–3276

    Article  CAS  PubMed  Google Scholar 

  • Bosma JF, Henkin RI, Christiansen RL, Herdt JR (1981) Hypoplasia of the nose and eyes, hyposmia, hypogeusia, and hypogonadotropic hypogonadism in two males. J Craniofac Genet Develop Biol 1:153–184

    CAS  Google Scholar 

  • Brasseur B, Martin CM, Cayci Z, Burmeister L, Schimmenti LA (2016) Bosam arhinia microphthalmia syndrome: clinical report and review of the literature. Am J Med Genet A 170A:1302–1307

    Article  PubMed  Google Scholar 

  • Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429

    Article  CAS  PubMed  Google Scholar 

  • Cape CJ, Zaidman GW, Beck AD, Kaufman AH (2004) Phenotypic variation in ophthalmic manifestations of MIDAS syndrome (microphthalmia, dermal aplasia, and sclerocornea). Arch Ophthalmol 122:1070–1074

    Article  PubMed  Google Scholar 

  • Casey J, Kawaguchi R, Morrissey M, Sun H, McGettigan P, Nielsen JE et al (2011) First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6phenotype. Hum Mutat 32:1417–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassaing N, Gilbert-Dussardier B, Nicot F, Fermeaux V, Encha-Razavi F, Fiorenza M et al (2007) Germinal mosaicism and familial recurrence of a SOX2 mutation with highly variable phenotypic expression extending from AEG syndrome to absence of ocular involvement. Am J Med Genet A 143:289–291

    Article  CAS  Google Scholar 

  • Chassaing N, Golzio C, Odent S, Lequeux L, Vigouroux A, Martinovic-Bouriel J et al (2009) Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 30:E673–E681

    Article  PubMed  Google Scholar 

  • Chassaing N, Sorrentino S, Davis EE, Martin-Coignard D, Iacovelli A, Paznekas W et al (2012) OTX2 mutations contribute to the otocephaly-dysgnathua complex. J Med Genet 49:373–379

    Article  CAS  PubMed  Google Scholar 

  • Chassaing N, Ragge N, Kariminejad A, Buffet A, Ghaderi-Sohi S, Martinovic J et al (2013) Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia. Clin Genet 83:244–250

    Article  CAS  PubMed  Google Scholar 

  • Chassaing N, Davis EE, McKnight KL, Niederriter AR, Causse A, David V et al (2016) Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res 26:474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JJ, Ting CT, Trogrlic L, Milevski SV, Familari M, Martinez G et al (2014) A role for smoothened during murine lens and cornea development. PLoS One 9:e108037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339(6123):1077–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cusick W, Sullivan CA, Rojas B, Poole AE, Poole DA (2000) Prenatal diagnosis of total arhinia. Ultrasound Obstet Gynecol 15:259–261

    Article  CAS  PubMed  Google Scholar 

  • Danno H, Michiue T, Hitachi K, Yukita A, Ishiura S, Asashima M (2008) Molecular links among the causative genes for ocular malformation: Otx2 and Sox2 coregulate Rax expression. Natl Acad Sci USA 105:5408–5413

    Article  Google Scholar 

  • Dateki S, Kosaka K, Hasegawa K, Tanaka H, Azuma N, Yokoya S et al (2010) Heterozygous orthodenticle homeobox 2 mutations are associated with variable pituitary phenotype. J Clin Endocrinol Metab 95:756–764

    Article  CAS  PubMed  Google Scholar 

  • del Arco A, Satrústegui J (2004) Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279:24701–24713

    Article  CAS  PubMed  Google Scholar 

  • Deml B, Kariminejad A, Borujerdi RH, Muheisen S, Reis LM, Semina EV (2015) Mutations in MAB21L2 result in ocular coloboma, microcornea and cataracts. PLoS Genet 11:e1005002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deml B, Reis LM, Lemyre E, Clark RD, Kariminejad A, Semina EV (2016) Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma. Eur J Hum Genet 24:535–541

    Article  CAS  PubMed  Google Scholar 

  • Dennert N, Engels H, Cremer K, Becker J, Wohlleber E, Albrecht B et al (2017) De novo microdeletions and point mutations affecting SOX2 in three individuals with intellectual disability but without major eye malformations. Am J Med Genet A 173:435–443

    Article  CAS  PubMed  Google Scholar 

  • Diaczok D, Romero C, Zunich J, Marshall I, Radovick S (2008) A novel dominant negativemutation of OTX2 associated with combined pituitary hormone deficiency. J Clin Endocrinol Metab 93:4351–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehmke N, Graul-Neumann L, Smorag L, Koenig R, Segebrecht L, Magoulas P et al (2017) De novo mutations in SLC25A24 cause a craniosynostosis syndrome with hypertrichosis, progeroid appearance, and mitochondrial dysfunction. Am J Hum Genet 101:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errichiello E, Gorgone C, Giuliano L, Iadarola B, Cosentino E, Rossato M et al (2018) SOX2: Not always eye malformations. Severe genital but no major ocular anomalies in a female patient with the recurrent c.70del20 variant. Eur J Med Genet 61:335–340

    Article  PubMed  Google Scholar 

  • Evans DG, Ladusans EJ, Rimmer S, Burnell LD, Thakker N (1993) Farndon PA Complications of the naevoid basal cell carcinoma syndrome: results of a population based study. J MedGenet 30:460–464

    CAS  Google Scholar 

  • Faivre L, Williamson KA, Faber V, Laurent N, Grimaldi M, Thauvin-Robinet C et al (2006) Recurrence of SOX2 anophthalmia syndrome with gonosomal mosaicism in a phenotypically normal mother. Am J Med Genet A 140:636–639

    Article  CAS  PubMed  Google Scholar 

  • Fares-Taie L, Gerber S, Chassaing N, Clayton-Smith J, Hanein S, Silva E et al (2013) ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. Am J Hum Genet 92:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farley ND, Sassalos TM, Ober MD (2017) Basal cell nevus syndrome presenting as epiretinal membrane and myelinated nerve fiber layer. Retin Cases Brief Rep 11:S151–S154

    Article  PubMed  Google Scholar 

  • Feberwee HE, Feenstra I, Oberoi S, Sama IE, Ockeloen CW, Clum F et al (2014) Novel BCOR mutations in patients with oculofaciocardiodental (OFCD) syndrome. Clin Genet 85:194–197

    Article  CAS  PubMed  Google Scholar 

  • Forrester MB, Merz RD (2006) Descriptive epidemiology of anophthalmia and microphthalmia, Hawaii, 1986–2001. Birth Defects Res A Clin Mol Teratol 76:187–192

    Article  CAS  PubMed  Google Scholar 

  • Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I et al (2014) Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 205:707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford GH, Swanson L, MacCollum DW (1972) Congenital absence of the nose and anterior nasopharynx. Plast Reconst Surg 50:5–12

    Article  PubMed  Google Scholar 

  • Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7:463–471

    Article  CAS  PubMed  Google Scholar 

  • Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M et al (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 80:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon CT, Xue S, Yigit G, Filali H, Chen K, Rosin N et al (2017) De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat Genet 49:249–255

    Article  CAS  PubMed  Google Scholar 

  • Gorlin RJ, Cohen MM Jr, Levin LS (1990) Syndromes with craniosynostosis: general aspects and well known syndromes. In: Syndromes of the head and neck, 3rd edn. Oxford University Press, Oxford, pp 519–539

  • Gorlin RJ, Chaudry AP, Moss ML (1960) Craniofacial dysostosis, patent ductus arteriosus, hypertrichosis, hypoplasia of the labia majora, dental and eye anomalies-a new syndrome? Craniofacial dysostosis, patent ductus arteriosus, hypertrichosis, hypoplasia of labia majora, dental and eye anomalies-a new syndrome? J Pediatr 56:778–785

    Article  CAS  PubMed  Google Scholar 

  • Graham JM Jr, Lee J (2006) Bosma arhinia microphthalmia syndrome. Am J Med Genet A 140:189–193

    Article  PubMed  Google Scholar 

  • Grange DK, Clericuzio CL, Bayliss SJ, Berk DR, Heideman RL, Higginson JK et al (2008) Two new patients with Curry-Jones syndrome with trichoblastoma and medulloblastoma suggest an etiologic role of the sonic hedgehog-patched-GLI pathway. Am J Med Genet A 146A:2589–2597

    Article  PubMed  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  CAS  PubMed  Google Scholar 

  • Handley M, Sheridan E (2018) RAB18 deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA), pp 1993–2018

    Google Scholar 

  • Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D et al (2013) Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Hum Mutat 34:686–696

    Article  CAS  PubMed  Google Scholar 

  • Handley MT, Carpanini SM, Mali GR, Sidjanin DJ, Aligianis IA, Jackson IJ et al (2015) Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biol 5:150047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harborne SP, King MS, Crichton PG, Kunji ER (2017) Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci Rep 7:45383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hever AM, Williamson KA, van Heyningen V (2006) Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet 69:459–470

    Article  CAS  PubMed  Google Scholar 

  • Hilton E, Johnston J, Whalen S, Okamoto N, Hatsukawa Y, Nishio J et al (2009) BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet 17:1325–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt R, Ceroni F, Bax DA, Broadgate S, Diaz DG, Santos C et al (2017) New variant and expression studies provide further insight into the genotype-phenotype correlation in YAP1-related developmental eye disorders. Sci Rep 7:7975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn D, Prescott T, Houge G, Brække K, Rosendahl K, Nishimura G et al (2015) A Novel Oculo Skeletal syndrome with intellectual disability caused by a particular MAB21L2 mutation. Eur J Med Genet 58:387–391

    Article  PubMed  Google Scholar 

  • Hum G. 2010;127:721–729

  • Indrieri A, van Rahden VA, Tiranti V, Morleo M, Iaconis D, Tammaro R et al (2012) Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet 91:942–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ippel PF, Gorlin RJ, Lenz W, van Doorne JM, Bijlsma JB (1992) Craniofacial dysostosis, hypertrichosis, genital hypoplasia, ocular, dental, and digital defects: confirmation of the Gorlin-Chaudhry-Moss syndrome. Am J Med Genet 44:518–522

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi J, Abdollahi S, Ghaedi H, Alehabib E, Tafakhori A, Alinaghi S et al (2017) A novel mutation in SMOC1 and variable phenotypic expression in two patioents with Waardenburg anophthalmia syndrome. Eur J Med Genet 60:578–582

    Article  PubMed  Google Scholar 

  • Jia J, Jiang J (2006) Decoding the Hedgehog signal in animal development. Cell Mol Life Sci 63:1249–1265

    Article  CAS  PubMed  Google Scholar 

  • Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    Article  CAS  PubMed  Google Scholar 

  • Jordan T, Hanson I, Zaletayev D, Hodgson S, Prosser J, Seawright A et al (1992) The human PAX6 gene is mutated in two patients with aniridia. Nat Genet 1:328–332

    Article  CAS  PubMed  Google Scholar 

  • Källén B, Robert E, Harris J (1996) The descriptive epidemiology of anophthalmia and microphthalmia. Int Epidemiol 25:1009–1016

    Article  Google Scholar 

  • Kamachi Y, Uchikawa M, Kondoh H (2000) Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 16:182–187

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P et al (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825

    Article  CAS  PubMed  Google Scholar 

  • Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J et al (2006) Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest 116:2442–2455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr CL, Huang J, Williams T, West-Mays JA (2012) Activation of the hedgehog signaling pathway in the developing lens stimulates ectopic FoxE3 expression and disruption in fiber cell differentiation. Invest Ophthalmol Vis Sci 53:3316–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer L, Taranova O, Sulik K, Pevny L (2012) SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mech Dev 129:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latypova X, Bordereau S, Bleriot A, Pichon O, Poulain D, Briand A,et al (2016) Mandibular dysostosis without microphthalmia caused by OTX2 deletion. Am J Med Genet A 170:2466–2470

    Article  CAS  PubMed  Google Scholar 

  • Li H, Sheridan R, Williams T (2013) Analysis of TFAP2A mutations in branchio-oculo-facial syndrome indicates functional complexity within the AP-2α DNA-binding domain. Hum Mol Genet 22:3195–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AE, Haldeman-Englert CR, Milunsky JM (2011) Branchiooculofacial syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2018 (updated 2018 Mar 29)

    Google Scholar 

  • Macchiaroli A, Kelberman D, Auriemma RS, Drury S, Islam L, Giangiobbe S et al (2014) A novel hterozygus SOX2 mutation causing congenital bilateral anophthalmia, hypogonadotropic hypogonadism and growth hormone deficiency. Gene 534:282–285

    Article  CAS  PubMed  Google Scholar 

  • Maity T, Fuse N, Beachy PA (2005) Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad Sci USA 102:17026–17031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcadier JL, Mears AJ, Woods EA, Fisher J, Airheart C, Qin W et al (2016) A novel mutation in two Hmong families broadens the range of STRA6-related malformations to include contractures and camptodactyly. Am J Med Genet A 170A:11–18

    Article  CAS  PubMed  Google Scholar 

  • Martsolf JT, Hunter AG, Haworth JC (1978) Severe mental retardation, cataracts, short stature, and primary hypogonadism in two brothers. Am J Med Genet 1:291–299

    Article  CAS  PubMed  Google Scholar 

  • McGlone L (2003) Congenital arhinia. J Paediatr Child Health 39:474–476

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TN, Free SL, Williamson KA, Stevens JM, Churchill JA, Hanson IM et al (2003) Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann Neurol 53:658–663

    Article  CAS  PubMed  Google Scholar 

  • Morleo M, Franco B (2011) Microphthalmia with Linear Skin Defects Syndrome. In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds) GeneReviews [Internet], University of Washington, Seattle, pp 1993–2004 (updated 2011 Aug 18)

    Google Scholar 

  • Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A et al (2004) Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet 36:411–416

    Article  CAS  PubMed  Google Scholar 

  • Oatts JT, Hull S, Michaelides M, Arno G, Webster AR, Moore AT (2017) Novel heterozygous mutation inYAP1 in a family with isolated ocular colobomas. Ophthalmic Genet 38:281–283

    Article  PubMed  Google Scholar 

  • Oberoi S, Winder AE, Johnston J, Vargervik K, Slavotinek AM (2005) Case reports of oculofaciocardiodental syndrome with unusual dental findings. Am J Med Genet A 136:275–277

    Article  PubMed  Google Scholar 

  • Okada I, Hamanoue H, Terada K, Tohma T, Megarbane A, Chouery E et al (2011) SMOC1 is essential for ocular and limb development in humans and mice. Am J Hum Genet 88:30–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen OE, Gjelland K, Reigstad H, Rosendahi K (2001) Congenital absence of the nose: a case report and literature review. Pediatr Radiol 31:225–232

    Article  CAS  PubMed  Google Scholar 

  • Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, Fitzpatrick DR, Nürnberg G et al (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 80:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patat O, van Ravenswaaij-Arts CM, Tantau J, Corsten-Janssen N, van Tintelen JP, Dijkhuizen T et al (2013) Otocephaly-dysgnathia complex: Description of four cases and confirmation of the role of OTX2. Mol Syndromol 4:302–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plaisancié J, Brémond-Gignac D, Demeer B, Gaston V, Verloes A, Fares-Taie L et al (2016) Incomplete penetrance of biallelic ALDH1A3 mutations. Eur J Med Genet 59:215–218

    Article  PubMed  Google Scholar 

  • Ragge NK, Salt A, Collin JR, Michalski A, Farndon PA (2005a) Gorlin syndrome: the PTCH gene links ocular developmental defects and tumour formation. Br J Ophthalmol 89:988–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de Sanctis U et al (2005b) SOX2 anophthalmia syndrome. Am J Med Genet A 135:1–7

    Article  PubMed  Google Scholar 

  • Ragge NK, Subak-Sharpe ID, Collin JR (2007) A practical guide to the management of anophthalmia and microphthalmia. Eye 21:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Ragge N, Isidor B, Bitoun P, Odent S, Giurgea I, Cogné B et al (2018) Expanding the phenotype of the X-linked BCOR microphthalmia syndromes. Hum Genet. https://doi.org/10.1007/s00439-018-1896-x

    Article  PubMed  Google Scholar 

  • Rainger J, van Beusekom E, Ramsay JK, McKie L, Al-Gazali L, Pallotta R et al (2011) Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice. PLoS Genet 7:e1002114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainger J, Pehlivan D, Johansson S, Bengani H, Sanchez-Pulido L, Williamson KA et al (2014) Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am J Hum Genet 94:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Botero AF, Pachajoa H (2016) Syndromic microphthalmia-3 caused by a mutation in gene SOX2 in a Colombian male patient. Congenit Anom (Kyoto) 56:250–252

    Article  CAS  Google Scholar 

  • Rea G, Homfray T, Till J, Roses-Noguer F, Buchan RJ, Wilkinson S et al (2017) Histocytoid cardiomyopathy and microphthalmia with linear skin defects syndrome: phenotypes linked by truncating variants in NDUFB11. Cold Spring Harb Mol Case Stud 3:a001271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis LM, Tyler TC, Schneider A, Bardakjian T, Semina EV (2010) Examination of SOX2 in variable ocular conditions identifies a recurrent deletion inmicrophthalmia and lack of mutations in other phenotypes. Mol Vis 16:768–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reis LM, Tyler RC, Schilter KF, Abdul-Rahman O, Innis JW, Kozel BA et al (2011) BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome. Hum Genet 130:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richieri-Costa A, Vendramini-Pittoli S, Kokitsu-Nakata NM, Zechi-Ceide RM, Alvarez CW, Ribeiro-Bicudo LA (2017) Multisystem involvement in a patient with a PTCH1 mutation: clinical and imaging findings. J Pediatr Genet 6:103–106

    CAS  PubMed  Google Scholar 

  • Ruprecht KW, Majewski F (1978) Familial arhinia combined with Peters anomaly and maxillary deformities: a new malformation syndrome. Klin Monatsbl Augenheilkd 172:708–715

    CAS  PubMed  Google Scholar 

  • Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM et al (2011) OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet 79:158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmenti LA, de la Cruz J, Lewis RA, Karkera JD, Manligas GS, Roessler E et al (2003) Novel mutation in sonic hedgehog in non-syndromic colobomatous microphthalmia. Am J Med Genet A 116A:215–221

    Article  PubMed  Google Scholar 

  • Schneider A, Bardakjian TM, Zhou J, Hughes N, Keep T, Dorsainville D et al (2008) Familial recurrence of SOX2 anophthalmia syndrome: phenotypically normal mother with two affected daughters. Am J Med Genet A 146A:2794–2798

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Bardakjian T, Reis LM, Tyler TC, Semina EV (2009) Novel SOX2 mutations and genotype–phenotype correlation in anophthalmia and microphthalmia. Am J Med Genet A 149A:2706–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segel R, Levy-Lahad E, Pasutto F, Picard E, Rauch A, Alterescu G et al (2009) Pulmonary hypoplasia–diaphragmatic hernia–anophthalmia–cardiac defect (PDAC) syndrome due to STRA6 mutations—what are the minimal criteria? Am J Med Genet A 149A:2457–2463

    Article  CAS  PubMed  Google Scholar 

  • Sergouniotis PI, Urquhart JE, Williams SG, Bhaskar SS, Black GC, Lovell SC et al (2015) Agnathia-otocephaly complex and asymmetric velopharyngeal insufficiency due to an in-frame duplication in OTX2. J Hum Genet 60:199–202

    Article  CAS  PubMed  Google Scholar 

  • Shaw ND, Brand H, Kupchinsky ZA, Bengani H, Plummer L, Jones TI et al (2017) SMCHD1 mutations associated with a rare muscular dystrophy can also case isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat Genet 49:238-248

    PubMed  PubMed Central  Google Scholar 

  • Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C, Stevens JM et al (2001) PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat Genet 28:214–216

    Article  CAS  PubMed  Google Scholar 

  • Slavotinek AM (2011) Eye development genes and known syndromes. Mol Genet Metab 104:448–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D et al (2015) Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet 88:468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spieler D, Baumer N, Stebler J, Koprunner M, Reichman-Fried M, Teichmann U et al (2004) Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the vertebrate homeobox gene ANF/Hesx1. Dev Biol 269:567–569

    Article  CAS  PubMed  Google Scholar 

  • Srour M, Chitayat D, Caron V, Chassaing N, Bitoun P, Patry L et al (2013) Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 93:765–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srour M, Caron V, Pearson T, Nielsen SB, Lévesque S, Delrue MA et al (2016) Gain-of-function mutations in RARΒ cause intellectual disability with progressive motor impairment. Hum Mutat 37:786–793

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Kawaguchi R (2011) The membrane receptor for plasma retinol-binding protein, a new type of cell-surface receptor. Int Rev Cell Mol Biol 288:1–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki J, Azuma N, Dateki S, Soneda S, Muroya K, Yamamoto Y et al (2014) Mutation spectrum and phenotypic variation in nine patients with SOX2 abnormaliites. J Hum Genet 59:353–356

    Article  CAS  PubMed  Google Scholar 

  • Sweeney RT, McClary AC, Myers BR, Biscocho J, Neahring L, Kwei KA et al (2014) Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet 46:722–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima T, Ohtake A, Hoshino M, Amemiya S, Sasaki N, Ishizu K et al (2009) OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J Clin Endocrinol Metab 94:314–319

    Article  CAS  PubMed  Google Scholar 

  • Tajima T, Ishizu K, Nakamura A (2013) Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol 22:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi M, Narumi S, Asakura Y, Muroya K, Hasegawa Y, Adachi M et al (2014) A novel mutation in SOX2 causes hypogonadotropic hypogonadism with mild ocular malformation. Horm Res Paediatr 81:133–138

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Nishina S, Kosaki R, Torii C, Furukawa R, Takahashi T et al (2013) Concurrent deletion of BMP4 and OTX2, two master genes in ophthalmogenesis. Eur J Med Genet 56:50–53

    Article  PubMed  Google Scholar 

  • Taylor SF, Cook AE, Leatherbarrow B (2006) Review of patients with basal cell nevus syndrome. Ophthal Plast Reconstr Surg 22:259–265

    Article  PubMed  Google Scholar 

  • Temple IK, Hurst JA, Hing S, Butler L, Baraitser M (1990) De novo deletion of Xp22.2-pter in a female with linear skin lesions of the face and neck, microphthalmia, and anterior chamber eye anomalies. J Med Genet 27:56–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temple IK, Eccles DM, Winter RM, Baraitser M, Carr SB, Shortland D et al (1995) Craniofacial abnormalities, agenesis of the corpus callosum, polysyndactyly and abnormal skin and gut development–the Curry Jones syndrome. Clin Dysmorphol 4:116–129

    Article  CAS  PubMed  Google Scholar 

  • Thiele H, Musil A, Nagel F, Majewski F (1996) Familial arhinia, choanal atresia, and microphthalmia. Am J Med Genet 63:310–313

    Article  CAS  PubMed  Google Scholar 

  • Twigg SRF, Hufnagel RB, Miller KA, Zhou Y, McGowan SJ, Taylor J et al (2016) A Recurrent mosaic mutation in SMO, encoding the hedgehog signal transducer smoothened, is the major cause of Curry-Jones Syndrome. Am J Hum Genet 98:1256–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah E, Nadeem Saqib MA, Sajid S, Shah N, Zubair M, Khan MA et al (2016) Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp Eye Res 146:163–171

    Article  CAS  PubMed  Google Scholar 

  • van Rahden VA, Rau I, Fuchs S, Kosyna FK, de Almeida HL Jr, Fryssira H et al (2014) Clinical spectrum of femaleas with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J Rare Dis 9:53

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rahden VA, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D et al (2015) Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome. Am J Hum Genet 96:640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma AS, Fitzpatrick DR (2007) Anophthalmia and microphthalmia. Orphanet J Rare Dis 2:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent A, Forster N, Maynes JT, Paton TA, Billingsley G, Roslin NM et al (2014) OTX2 mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. J Med Genet 51:797–805

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liang X, Yi Q, Zhang (2008) Novel SOX2 mutation associated with ocular coloboma in a Chinese family. Arch Ophthalmol 126:709–713

    Article  CAS  PubMed  Google Scholar 

  • Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M et al (2014) Bone Morphogenetic Protein (BMP) signaling in development and human disease. Genes Dis 1:87–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg M, Sjo O, Fledelius HC, Pedersen SA (1993) Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome. Am J Dis Child 147:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • West B, Bove KE, Slavotinek AM (2009) Two novel STRA6 mutations in a patient with anophthalmia and diaphragmatic eventration. Am J Med Genet A 149A:539–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White T, Lu T, Metlapally R, Katowitz J, Kherani F, Wang TY et al (2008) Identification of STRA6 and SKI sequence variants in patients with anophthalmia/microphthalmia. Mol Vis 14:2458–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie AO (2017) Many faces of SMCHD1. Nat Genet 49:176–178

    Article  CAS  PubMed  Google Scholar 

  • Williamson KA, FitzPatrick DR (2014) The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet 57:369–380

    Article  PubMed  Google Scholar 

  • Williamson KA, Rainger J, Floyd JA, Ansari M, Meynert A, Aldridge KV et al (2014) Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Am J Hum Genet 94:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimplinger I, Morleo M, Rosenberger G, Iaconis D, Orth U, Meinecke P et al (2006) Mutations of the mitochondrial holocytochrome c-type synthase in X-linked dominant microphthalmia with linear skin defects syndrome. Am J Hum Genet 79:878–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimplinger I, Rauch A, Orth U, Schwarzer U, Trautmann U, Kutsche K (2007) Mother and daughter with a terminal Xp deletion: implication of chromosomal mosaicism and X-inactivation in the high clinical variability of the microphthalmia with linear skin defects (MLS) syndrome. Eur J Med Genet 50:421–431

    Article  PubMed  Google Scholar 

  • Writzl K, Maver A, Kovačič L, Martinez-Valero P, Contreras L, Satrustegui J et al (2017) De Novo mutations in SLC25A24 cause a disorder characterized by early aging, bone dysplasia, characteristic face, and early demise. Am J Hum Genet 101:844–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt A, Bakrania P, Bunyan DJ, Osborne RJ, Crolla JA, Salt A et al (2008) Novel heterozygous OTX2 mutations and whole gene deletions in anophthalmia, microphthalmia and coloboma. Hum Mutat 29:E278–E283

    Article  PubMed  Google Scholar 

  • Wyatt AW, Osborne RJ, Stewart H, Ragge NK (2010) Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum Mutat 31:781–787

    Article  CAS  PubMed  Google Scholar 

  • Yahyavi M, Abouzeid H, Gawdat G, de Preux AS, Xiao T, Bardakjian T et al (2013) ALDH1A3 loss of function cases bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 22:3250–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada R, Mizutani-Koseki Y, Koseki H, Takahashi N (2004) Requirement for Mab21l2 during development of murine retina and ventral body wall. Dev Biol 274:295–307

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Slavotinek.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavotinek, A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia–microphthalmia. Hum Genet 138, 831–846 (2019). https://doi.org/10.1007/s00439-018-1949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-018-1949-1

Navigation