Skip to main content

Advertisement

Log in

Forty years of development of salpingitis animal modeling

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

This review summarizes and examines research in the area of salpingitis animal modeling in the last 40 years, focusing primarily on Chlamydia trachomatis animal models, which are the most numerous in the literature. Early animal models are examined, followed by a discussion of study parameters and their impact on modeling success, subsequent considerations of fertility measures in modeling, explorations of treatment options, and finally exploring recent directions with a brief discussion of models using other bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sellors JW, Mahony JB, Chernesky MA, Rath DJ (1988) Tubal factor infertility: an association with prior chlamydial infection and asymptomatic salpingitis. Fertil Steril 49(3):451–457

    Article  CAS  PubMed  Google Scholar 

  2. Riduan Joesoef M, Westrom L, Reynolds G, Marchbanks P, Cates W (1991) Recurrence of ectopic pregnancy: the role of salpingitis. Am J Obstet Gynecol 165(1):46–50

    Article  Google Scholar 

  3. Mårdh P-A (2004) Tubal factor infertility, with special regard to chlamydial salpingitis. Curr Opin Infect Dis 17(1):49–52

    Article  PubMed  Google Scholar 

  4. Jaiyeoba O, Lazenby G, Soper DE (2011) Recommendations and rationale for the treatment of pelvic inflammatory disease. Expert Rev Anti Infect Ther 9(1):61–70

    Article  PubMed  Google Scholar 

  5. Shafer M-A, Irwin CE, Sweet RL (1982) Acute salpingitis in the adolescent female. J Pediatr 100(3):339–350

    Article  CAS  PubMed  Google Scholar 

  6. Torvald Ripa K, MØller BR, Mårdh P-A, Freundt EA, Melsen F (1979) Experimental acute salpingitis in grivet monkeys provoked by chlamydia trachomatis. Acta Pathologica Microbiologica Scandinavica Section B Microbiology 87(1–6):65–70

    Google Scholar 

  7. White HAROLDJ, Rank RG, Soloff BL, Barron AL (1979) Experimental chlamydial salpingitis in immunosuppressed guinea pigs infected in the genital tract with the agent of guinea pig inclusion conjunctivitis. Infect Immun 26(2):728–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barron AL, White HJ, Rank RG, Soloff BL, Moses EB (1981) A new animal model for the study of chlamydia trachomatis genital infections: infection of mice with the agent of mouse pneumonitis. J Infect Dis 143(1):63–66

    Article  CAS  PubMed  Google Scholar 

  9. Tuffrey M, Taylor-Robinson D (1981) Progesterone as a key factor in the development of a mouse model for genital-tract infection with chlamydia trachomatis. FEMS Microbiol Lett 12(2):111–115

    Article  CAS  Google Scholar 

  10. Tuffrey M, Falder P, Taylor-Robinson D (1982) Genital-tract infection and disease in nude and immunologically competent mice after inoculation of a human strain of chlamydia trachomatis. Br J Exp Pathol 63(5):539

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Swenson CE, Donegan E, Schachter J (1983) Chlamydia trachomatis-induced salpingitis in mice. J Infect Dis 148(6):1101–1107

    Article  CAS  PubMed  Google Scholar 

  12. Patton DL, Halbert SA, Kuo C-C, Wang S-P, Holmes KK (1983) Host response to primary chlamydia trachomatis infection of the fallopian tube in pig-tailed monkeys. Fertil Steril 40(6):829–840

    Article  CAS  PubMed  Google Scholar 

  13. Patton DL (1985) Immunopathology and histopathology of experimental chlamydial salpingitis. Rev Infect Dis 7(6):746–753

    Article  CAS  PubMed  Google Scholar 

  14. Tuffrey M, Falder P, Gale J, Taylor-Robinson D (1986) Salpingitis in mice induced by human strains of chlamydia trachomatis. Br J Exp Pathol 67(4):605

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuffrey M, Falder P, Gale J, Quinn R, Taylor-Robinson D (1986) Infertility in mice infected genitally with a human strain of chlamydia trachomatis. Reproduction 78(1):251–260

    Article  CAS  Google Scholar 

  16. Patton DL, Landers DV, Schachter J (1989) Experimental chlamydia trachomatis salpingitis in mice: initial studies on the characterization of the leukocyte response to chlamydial infection. J Infect Dis 159(6):1105–1110

    Article  CAS  PubMed  Google Scholar 

  17. Tuffrey M, Alexander F, Inman C, Ward ME (1990) Correlation of infertility with altered tubal morphology and function in mice with salpingitis induced by a human genital-tract isolate of chlamydia trachomatis. Reproduction 88(1):295–305

    Article  CAS  Google Scholar 

  18. Zana J, Thomas D, Muffat-Joly M, de Brux J, Pocidalo JJ, Orfila J, Carbon C, Salat-Baroux J (1990) An experimental model for salpingitis due to chlamydia trachomatis and residual tubal infertility in the mouse. Hum Reprod 5(3):274–278

    Article  CAS  PubMed  Google Scholar 

  19. Pal S, Fielder TJ, Peterson EM, de la Maza LM (1993) Analysis of the immune response in mice following intrauterine infection with the chlamydia trachomatis mouse pneumonitis biovar. Infect Immun 61(2):772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas D, Orfila J, Bissac E (1993) Impact of ofloxacin treatment on post chlamydial infertility in a mouse model. Medecine et maladies infectieuses 23:441–443

    Article  Google Scholar 

  21. De La Maza LM, Pal S, Khamesipour A, Peterson EM (1994) Intravaginal inoculation of mice with the chlamydia trachomatis mouse pneumonitis biovar results in infertility. Infect Immun 62(5):2094–2097

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pal S, Fielder TJ, Peterson EM, De la Maza LM (1994) Protection against infertility in a balb/c mouse salpingitis model by intranasal immunization with the mouse pneumonitis biovar of chlamydia trachomatis. Infect Immun 62(8):3354–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pearlman MD, Gene McNeeley S, Frank TS, Hoeft-Loyer C (1994) Antiendotoxin antibody is protective against tubal damage in an escherichia coli rabbit salpingitis model. Am J Obstet Gynecol 171(6):1588–1593

    Article  CAS  PubMed  Google Scholar 

  24. Bissac Verhoest E, Sevestre H, Orfila PJ (1997) Use of an experimental model of chlamydial salpingitis in mice for the evaluation of activity of antibiotics and anti-inflammatory drugs on fertility. J Obstet Gynaecol 17(5):476–478

    Article  PubMed  Google Scholar 

  25. Pal S, Peterson EM, de la Maza LM (2001) Susceptibility of mice to vaginal infection with chlamydia trachomatis mouse pneumonitis is dependent on the age of the animal. Infect Immun 69(8):5203–5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carmichael JR, Tifrea D, Pal S, Luis M (2013) Differences in infectivity and induction of infertility: a comparative study of chlamydia trachomatis strains in the murine model. Microbes Infect 15(3):219–229

    Article  PubMed  Google Scholar 

  27. Koroleva EA, Kobets NV, Zayakin ES, Luyksaar SI, Shabalina LA, Zigangirova NA (2015) Small molecule inhibitor of type three secretion suppresses acute and chronic chlamydia trachomatis infection in a novel urogenital chlamydia model. BioMed Res Int 2015

  28. Yang J, Chi C, Liu Z, Yang G, Shen Z-J, Yang X-J (2015) Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med 19(7):1720–1728

    Article  PubMed  PubMed Central  Google Scholar 

  29. Luo HJ, Xiao XM, Zhou J, Wei W (2015) Therapeutic influence of intraperitoneal injection of wharton’s jelly-derived mesenchymal stem cells on oviduct function and fertility in rats with acute and chronic salpingitis. Genet Mol Res 14(2):3606–3617

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Zhang Z, Chen X, Zhou J, Xiao X-M (2017) Treatment evaluation of wharton’s jelly-derived mesenchymal stem cells using a chronic salpingitis model: an animal experiment. Stem Cell Res Ther 8(1):1–13

    Article  Google Scholar 

  31. Luan SX, Chen XH (2017) The glucocorticoid inhibits neutrophils formed extracellular traps (nets) and suppresses the inflammation caused by fallopian tube staphylococcal infection. Eur Rev Med Pharmacol 21(4):855–860

    Google Scholar 

  32. Sweet RI, Draper DL, Schachter J, James J, Hadley WK, Brooks GF (1980) Microbiology and pathogenesis of acute salpingitis as determined by laparoscopy: what is the appropriate site to sample? Am J Obstet Gynecol 138(7):985–989

    Article  CAS  PubMed  Google Scholar 

  33. Soper DE, Brockwell NJ, Dalton HP, Johnson D (1994) Observations concerning the microbial etiology of acute salpingitis. Am J Obstet Gynecol 170(4):1008–1017

    Article  CAS  PubMed  Google Scholar 

  34. Spencer THI, Umeh PO, Irokanulo E, Baba MM, Spencer BB, Umar AI, Ardzard SA, Oderinde S, Onoja O (2014) Bacterial isolates associated with pelvic inflammatory disease among female patients attending some hospitals in abuja, nigeria. Afr J Infect Dis 8(1):9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yingping Xu, He H, Li C, Shi Y, Wang Q, Li W, Song W (2011) Immunosuppressive effect of progesterone on dendritic cells in mice. J Reprod Immunol 91(1–2):17–23

    Google Scholar 

  36. Schust DJ, Anderson DJ, Hill JA (1996) Progesterone-induced immunosuppression is not mediated through the progesterone receptor. Hum Reprod 11(5):980–985

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by Sichuan Science and Technology Program (Grant No. 2022YFS0415). National Natural Science Foundation of China (Grant No. 82205175).

Author information

Authors and Affiliations

Authors

Contributions

YH: date collection, manuscript writing, project development. BZ: date collection, manuscript writing. XJ: data analysis. YW: data analysis. YW: project development, date collection. XH: project development, date Collection. YY: project development.

Corresponding author

Correspondence to Ye Yuan.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhu, B., Ji, X. et al. Forty years of development of salpingitis animal modeling. Arch Gynecol Obstet 308, 1093–1112 (2023). https://doi.org/10.1007/s00404-023-06966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-06966-1

Keywords

Navigation