Skip to main content
Log in

Phylogenomics of the Phylum Proteobacteria: Resolving the Complex Relationships

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Proteobacteria is one of the largest and phenotypically most diverse divisions within the domain bacteria. Due to the economic importance, this phylum demands an urgent need for a clear and scientifically sound classification system to streamline their characterization. The goal of our study was to carefully reevaluate the current system of classification and suggest changes wherein necessary. Phylogenetic trees of 84 Proteobacteria were constructed using single gene-based phylogeny involving 16S rRNA genes and protein sequences of 85 conserved genes, whole genome-based phylogenetic tree using CVtree3.0, amino acid Identity matrix tree, and concatenated tree with aforementioned conserved genes. The results of our study confirm the polyphyletic relationship between Desulfurella acetivorans, a Deltaproteobacteria with Epsilonproteobacteria. The group Syntrophobacterales was found to be polyphyletic with respect to Desulfarculus baarsii and the group Thiotrichales was found to be splitting in different phylogenetic trees. Placement of phylogenetic groups belonging to Rhodocyclales, Oceonospirilalles, and Chromatiales is controversial and requires further study and revisions. Based on our analysis, we strongly support reclassification of Magnetococcales as a separate class Etaproteobacteria. From our results, we conclude that concatenated trees of conserved proteins are a more accurate method for phylogenetic analysis, as compared to other methods used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta RS (2000) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24(4):367–402

    Article  CAS  PubMed  Google Scholar 

  2. Stackebrandt E, Murray RGE, Truper HG (1988) Proteobacteria classis nov. a name for the phylogenetic taxon that includes the "Purple Bacteria and Their Relatives”. Int J Syst Bacteriol 38:321–325

    Article  Google Scholar 

  3. Murray R, Brenner D, Colwell R, De Vos P, Goodfellow M, Grimont P et al (1990) Report of the ad hoc committee on approaches to taxonomy within the proteobacteria. Int J Syst Bacteriol 40:213–215

    Article  Google Scholar 

  4. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ji B, Zhang SD, Zhang WJ, Rouy Z, Alberto F, Santini CL et al (2017) The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environ Microbiol 19(3):1103–1119

    Article  CAS  PubMed  Google Scholar 

  6. Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA et al (2018) Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J 12(6):1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin N-R, Whon TW, Bae J-W (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503

    Article  CAS  PubMed  Google Scholar 

  8. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A (2017) Proteobacteria: a common factor in human diseases. Biomed Res Int 2017:9351507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12(4):518–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Munoz-Gomez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH et al (2019) An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. Elife. https://doi.org/10.7554/eLife.42535

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boden R, Hutt LP, Rae AW (2017) Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the “Proteobacteria”, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 67(5):1191–1205

    Article  CAS  PubMed  Google Scholar 

  12. Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM et al (2010) Phylogeny of gammaproteobacteria. J Bacteriol 192(9):2305–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janda JM, Abbott SL (2021) The changing face of the family Enterobacteriaceae (Order: “Enterobacterales”): new members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00174-20

    Article  PubMed  PubMed Central  Google Scholar 

  14. Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K et al (2018) Erratum: addendum: comparative genomic analysis of the class epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front Microbiol 9:772

    Article  PubMed  PubMed Central  Google Scholar 

  15. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M et al (2020) Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 70(11):5972–6016

    Article  CAS  PubMed  Google Scholar 

  16. Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C et al (2007) A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2(7):e667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. McAllister S, Moore R, Gartman A, Luther G, Emerson D, Chan C (2019) The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiz015

    Article  PubMed  PubMed Central  Google Scholar 

  18. Williams KP, Kelly DP (2013) Proposal for a new class within the phylum Proteobacteria, Acidithiobacillia classis nov., with the type order Acidithiobacillales, and emended description of the class Gammaproteobacteria. Int J Syst Evol Microbiol 63(8):2901–2906

    Article  CAS  PubMed  Google Scholar 

  19. Moya-Beltran A, Beard S, Rojas-Villalobos C, Issotta F, Gallardo Y, Ulloa R et al (2021) Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions. ISME J 15(11):3221–3238

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakai R, Nishijima M, Tazato N, Handa Y, Karray F, Sayadi S et al (2014) Oligoflexus tunisiensis gen. nov., sp. Nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. Nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol 64(Pt 10):3353–3359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hahn MW, Schmidt J, Koll U, Rohde M, Verbarg S, Pitt A et al (2017) Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol 67(8):2555–2568

    Article  CAS  PubMed  Google Scholar 

  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S et al (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47(W1):W260–W265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Consortium TU (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  CAS  Google Scholar 

  25. Zuo G, Hao B (2015) CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genom Proteomics Bioinform 13(5):321–331

    Article  Google Scholar 

  26. Li Q, Xu Z, Hao B (2010) Composition vector approach to whole-genome-based prokaryotic phylogeny: success and foundations. J Biotechnol 149(3):115–119

    Article  CAS  PubMed  Google Scholar 

  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  29. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Towards automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  CAS  PubMed  Google Scholar 

  30. Galtier N (2007) A model of horizontal gene transfer and the bacterial phylogeny problem. Syst Biol 56(4):633–642

    Article  PubMed  Google Scholar 

  31. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A et al (2007) Polyphasic approach of bacterial classification—an overview of recent advances. Indian J Microbiol 47(2):98–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Devulder G, Pérouse de Montclos M, Flandrois JPA (2005) multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302

    Article  CAS  PubMed  Google Scholar 

  33. Garnier F, Gerbaud G, Courvalin P, Galimand M (1997) Identification of clinically relevant viridans group streptococci to the species level by PCR. J Clin Microbiol 35(9):2337–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159

    Article  CAS  PubMed  Google Scholar 

  35. Shivannavar CT, Katoch VM, Sharma VD, Patil MA, Katoch K, Bharadwaj VP et al (1996) Determination of mycobacterial phylogeny on the basis of immunological relatedness of superoxide dismutases. Int J Syst Bacteriol 46(4):1164–1169

    Article  CAS  PubMed  Google Scholar 

  36. Verma M, Lal D, Kaur J, Saxena A, Kaur J, Anand S et al (2013) Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences. Res Microbiol 164(7):718–728

    Article  CAS  PubMed  Google Scholar 

  37. Verma M, Kulshrestha S, Puri A (2017) Genome sequencing. Methods Mol Biol 1525:3–33

    Article  CAS  PubMed  Google Scholar 

  38. Rainey FA, Toalster R, Stackebrandt E (1993) Desulfurella acetivorans, a thermophilic, acetate-oxidizing and sulfur-reducing organism, represents a distinct lineage within the proteobacteria. Syst Appl Microbiol 16(3):373–379

    Article  CAS  Google Scholar 

  39. Nakai R, Fujisawa T, Nakamura Y, Baba T, Nishijima M, Karray F et al (2016) Genome sequence and overview of Oligoflexus tunisiensis Shr3(T) in the eighth class Oligoflexia of the phylum Proteobacteria. Stand Genom Sci 11:90

    Article  CAS  Google Scholar 

  40. Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K et al (2017) Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front Microbiol 8:682

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kalyuzhnyi SV, Shestakova NM, Tourova TP, Poltaraus AB, Gladchenko MA, Trukhina AI et al (2010) Phylogenetic analysis of a microbial community involved in anaerobic oxidation of ammonium nitrogen. Microbiology 79(2):237–246

    Article  CAS  Google Scholar 

  42. Melnyk R, Coates J (2015) The perchlorate reduction genomic island: mechanisms and pathways of evolution by horizontal gene transfer. BMC Genom 16:1–11

    Article  CAS  Google Scholar 

  43. Canback B, Tamas I, Andersson SG (2004) A phylogenomic study of endosymbiotic bacteria. Mol Biol Evol 21(6):1110–1122

    Article  PubMed  CAS  Google Scholar 

  44. Adeolu M, Alnajar S, Naushad S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66(12):5575–5599

    Article  CAS  PubMed  Google Scholar 

  45. Williams K, Gillespie J, Sobral B, Nordberg E, Snyder E, Shallom J et al (2010) Phylogeny of Gammaproteobacteria. J Bacteriol 192:2305–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caro-Quintero A, Konstantinidis KT (2015) Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. ISME J 9(4):958–967

    Article  CAS  PubMed  Google Scholar 

  47. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT et al (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47(19):10860–10867

    Article  CAS  PubMed  Google Scholar 

  48. Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 59(Pt 2):234–247

    Article  CAS  PubMed  Google Scholar 

  49. Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool B Mol Dev Evol 304(1):64–74

    Article  PubMed  CAS  Google Scholar 

  50. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284(5423):2124–2129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Prof. C. Sheela Reddy, Principal, Sri Venkateswara College, University of Delhi for encouraging to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

MV conceived the idea of this research question. VS, AV, ALMJ, AK, NB, RY, AB, AG, SL performed the analysis and drafted the manuscript. MV supported the interpretation of data from the literature and the revision of the manuscript. MV, AV, ALMJ, AK, PS critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mansi Verma.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1401 kb)

Supplementary file2 (DOCX 2346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Vashishtha, A., Jos, A.L.M. et al. Phylogenomics of the Phylum Proteobacteria: Resolving the Complex Relationships. Curr Microbiol 79, 224 (2022). https://doi.org/10.1007/s00284-022-02910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02910-9

Navigation