Skip to main content

Advertisement

Log in

Leptospira interrogans Retains Direct Virulence After Long Starvation in Water

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mostly studied as a zoonosis, leptospirosis is also an environment-borne infection and most human cases originate from soil or water contaminations. Yet, only few studies have been interested in the survival of pathogenic Leptospira in freshwater. In this study, water microcosms were designed to evaluate the survival and virulence of Leptospira spp. for 2 years. Four commercial bottled drinking waters and a non-ionized water, all previously filter-sterilized, were studied. Either one of two Leptospira interrogans strains, one Leptospira borgpetersenii strain, or a saprophytic Leptospira biflexa was inoculated in these waters under nutrient-deprived conditions. Molecular, microscopic and cultural approaches were used to study Leptospira survival. Direct virulence of the pathogens was assessed using animal challenge without re-culturing. Our results confirmed the capacity of pathogenic Leptospira to survive for more than a year in water. In addition, we showed the ability of L. interrogans in nutrient-deprived conditions to directly cause systemic infection in susceptible animals. To our knowledge, this is the first report of direct infection of a susceptible host with Leptospira following a long starvation and survival period in nutrient-deprived water. Our results also suggest that Leptospira turned into a physiological “survival” state in harsh freshwater conditions. These data are of prime importance considering that freshwater is a major source of Leptospira infections. Environmental survival and virulence of pathogenic Leptospira spp. are becoming a crucial challenge to determine the environmental risk and adopt relevant prevention and control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, Stein C, Abela-Ridder B, Ko AI (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9(9):e0003898. https://doi.org/10.1371/journal.pntd.0003898

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thiermann AB (1981) The Norway rat as a selective chronic carrier of Leptospiraicterohaemorrhagiae. J Wildl Dis 17(1):39–43. https://doi.org/10.7589/0090-3558-17.1.39

    Article  CAS  PubMed  Google Scholar 

  3. Bierque E, Thibeaux R, Girault D, Soupé-Gilbert ME, Goarant C (2020) A systematic review of Leptospira in water and soil environments. PLoS ONE 15(1):e0227055. https://doi.org/10.1371/journal.pone.0227055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ko AI, Galvao Reis M, Ribeiro Dourado CM, Johnson WD Jr, Riley LW (1999) Urban epidemic of severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. Lancet 354(9181):820–825. https://doi.org/10.1016/s0140-6736(99)80012-9

    Article  CAS  PubMed  Google Scholar 

  5. Trevejo RT, Rigau-Perez JG, Ashford DA, McClure EM, Jarquin-Gonzalez C, Amador JJ, de los Reyes JO, Gonzalez A, Zaki SR, Shieh WJ, McLean RG, Nasci RS, Weyant RS, Bolin CA, Bragg SL, Perkins BA, Spiegel RA (1998) Epidemic leptospirosis associated with pulmonary hemorrhage-Nicaragua, 1995. J Infect Dis 178(5):1457–1463. https://doi.org/10.1086/314424

    Article  CAS  PubMed  Google Scholar 

  6. Agampodi SB, Nugegoda DB, Thevanesam V, Vinetz JM (2015) Characteristics of rural leptospirosis patients admitted to referral hospitals during the 2008 leptospirosis outbreak in Sri Lanka: implications for developing public health control measures. Am J Trop Med Hygiene 92(1):139–144. https://doi.org/10.4269/ajtmh.14-0465

    Article  Google Scholar 

  7. Amilasan AT, Ujiie M, Suzuki M, Salva E, Belo MCP, Koizumi N, Yoshimatsu K, Schmidt W-P, Marte S, Dimaano EM, Villarama JB, Ariyoshi K (2012) Outbreak of leptospirosis after flood, the Philippines, 2009. Emerg Infect Dis 18(1):91–94. https://doi.org/10.3201/eid1801.101892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Togami E, Kama M, Goarant C, Craig SB, Lau C, Ritter JM, Imrie A, Ko A, Nilles E (2018) A large leptospirosis outbreak following successive severe floods in Fiji, 2012. Am J Trop Med Hygiene 99(4):849–851. https://doi.org/10.4269/ajtmh.18-0335

    Article  Google Scholar 

  9. Weinberger D, Baroux N, Grangeon J-P, Ko AI, Goarant C (2014) El Niño Southern Oscillation and leptospirosis outbreaks in New Caledonia. PLoS Neglec Trop Dis 8(4):e2798. https://doi.org/10.1371/journal.pntd.0002798

    Article  Google Scholar 

  10. Saito M, Villanueva SY, Chakraborty A, Miyahara S, Segawa T, Asoh T, Ozuru R, Gloriani NG, Yanagihara Y, Yoshida SI (2013) Comparative analysis of Leptospirastrains isolated from environmental soil and water in the Philippines and Japan. Appl Environ Microbiol 79(2):601–609. https://doi.org/10.1128/AEM.02728-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thibeaux R, Geroult S, Benezech C, Chabaud S, Soupé-Gilbert ME, Girault D, Bierque E, Goarant C (2017) Seeking the environmental source of Leptospirosis reveals durable bacterial viability in river soils. PLoS Neglec Trop Dis 11(2):e0005414. https://doi.org/10.1371/journal.pntd.0005414

    Article  Google Scholar 

  12. Tripathy DN, Hanson LE (1973) Leptospires from water sources at Dixon Springs Agricultural Center. J Wildl Dis 9(3):209–212

    Article  CAS  Google Scholar 

  13. Smith DJ, Self HR (1955) Observations on the survival of Leptospira australis A in soil and water. J Hygiene 53(4):436–444

    CAS  Google Scholar 

  14. Smith CEG, Turner LH (1961) The effect of pH on the survival of leptospires in water. Bull WHO 24(1):35–43

    CAS  PubMed  Google Scholar 

  15. Andre-Fontaine G, Aviat F, Thorin C (2015) Waterborne Leptospirosis: survival and preservation of the virulence of Pathogenic Leptospira spp. in fresh water. Curr Microbiol 71(1):136–142. https://doi.org/10.1007/s00284-015-0836-4

    Article  CAS  PubMed  Google Scholar 

  16. Gillespie RWH, Ryno J (1963) Epidemiology of Leptospirosis. Am J Public Health Nat Health 53(6):950–955

    Article  CAS  Google Scholar 

  17. Crawford RP, Heinemann JM, McCulloch WF, Diesch SL (1971) Human infections associated with waterborne Leptospires, and survival studies on serotype pomona. J Am Vet Med Assoc 159(11):1477–1484

    CAS  PubMed  Google Scholar 

  18. Barragan VA, Mejia ME, Travez A, Zapata S, Hartskeerl RA, Haake DA, Trueba GA (2011) Interactions of Leptospira with environmental bacteria from surface water. Curr Microbiol 62(6):1802–1806. https://doi.org/10.1007/s00284-011-9931-3

    Article  CAS  PubMed  Google Scholar 

  19. Ristow P, Bourhy P, Kerneis S, Schmitt C, Prevost MC, Lilenbaum W, Picardeau M (2008) Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154(Pt 5):1309–1317

    Article  CAS  Google Scholar 

  20. Schiettekatte O, Vincent AT, Malosse C, Lechat P, Chamot-Rooke J, Veyrier FJ, Picardeau M, Bourhy P (2018) Characterization of LE3 and LE4, the only lytic phages known to infect the spirochete Leptospira. Sci Rep 8:11781

    Article  Google Scholar 

  21. Murray GL, Morel V, Cerqueira GM, Croda J, Srikram A, Henry R, Ko AI, Dellagostin OA, Bulach DM, Sermswan R, Adler B, Picardeau M (2009) Genome-wide transposon mutagenesis in pathogenic Leptospira spp. Infect Immun 77(2):810–816. https://doi.org/10.1128/IAI.01293-08

    Article  CAS  PubMed  Google Scholar 

  22. Perez J, Brescia F, Becam J, Mauron C, Goarant C (2011) Rodent abundance dynamics and leptospirosis carriage in an area of hyper-endemicity in New Caledonia. PLoS Neglec Trop Dis 5(10):e1361. https://doi.org/10.1371/journal.pntd.0001361

    Article  Google Scholar 

  23. Faine S, Adler B, Bolin C, Perolat P (1999) Leptospira and Leptospirosis, Second Edition. MedSci, Melbourne, Vic. Australia, Melbourne, Australia

  24. Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR (2009) Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis 64(3):247–255. https://doi.org/10.1016/j.diagmicrobio.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  25. Merien F, Amouriaux P, Perolat P, Baranton G, Saint Girons I (1992) Polymerase chain reaction for detection of Leptospira spp. in clinical samples. J Clin Microbiol 30(9):2219–2224

    Article  CAS  Google Scholar 

  26. Soupé-Gilbert ME, Bierque E, Geroult S, Teurlai M, Goarant C (2017) Continuous excretion of Leptospira borgpetersenii Ballum in mice assessed by viability-quantitative PCR. Am J Tropical Med Hygiene 97(4):1088–1093. https://doi.org/10.4269/ajtmh.17-0114

    Article  CAS  Google Scholar 

  27. Bae S, Wuertz S (2009) Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75(9):2940–2944. https://doi.org/10.1128/AEM.01333-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murgia R, Riquelme N, Baranton G, Cinco M (1997) Oligonucleotides specific for pathogenic and saprophytic Leptospira occurring in water. FEMS Microbiol Lett 148(1):27–34

    Article  CAS  Google Scholar 

  29. Scialfa E, Grune S, Brihuega B, Aguirre P, Rivero M (2018) Isolation of saprophytic Leptospira spp. from a selected environmental water source of Argentina. Revista Argentina de Microbiologia 50(3):323–326. https://doi.org/10.1016/j.ram.2017.08.003

    Article  PubMed  Google Scholar 

  30. Noguchi H (1918) The survival of Leptospira (Spirochaeta) icterohaemorrhagiae in nature; observations concerning microchemical reactions and intermediary hosts. J Exp Med 27(5):609–625

    Article  CAS  Google Scholar 

  31. Bulach DM, Zuerner RL, Wilson P, Seemann T, McGrath A, Cullen PA, Davis J, Johnson M, Kuczek E, Alt DP, Peterson-Burch B, Coppel RL, Rood JI, Davies JK, Adler B (2006) Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103(39):14560–14565. https://doi.org/10.1073/pnas.0603979103

    Article  PubMed  Google Scholar 

  32. Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, Wilson PJ, Creno S, Kuczek ES, Bommezzadri S, Davis JC, McGrath A, Johnson MJ, Boursaux-Eude C, Seemann T, Rouy Z, Coppel RL, Rood JI, Lajus A, Davies JK, Medigue C, Adler B (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 3(2):e1607

    Article  Google Scholar 

  33. Chang SL, Buckingham M, Taylor MP (1948) Studies on Leptospira icterohaemorrhagiae; survival in water and sewage; destruction in water by halogen compounds, synthetic detergents, and heat. J Infect Dis 82(3):256–266

    Article  CAS  Google Scholar 

  34. Casanovas-Massana A, Pedra GG, Wunder EA Jr, Diggle PJ, Begon M, Ko AI (2018) Quantification of Leptospira interrogans survival in soil and water microcosms. Appl Environ Microbiol 84(13):e00507–00518. https://doi.org/10.1128/aem.00507-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stoddard RA, Bui D, Haberling DL, Wuthiekanun V, Thaipadungpanit J, Hoffmaster AR (2014) Viability of Leptospira isolates from a human outbreak in thailand in various water types, pH, and temperature conditions. Am J Tropical Med Hygiene 91(5):1020–1022. https://doi.org/10.4269/ajtmh.13-0748

    Article  Google Scholar 

  36. Thibeaux R, Soupé-Gilbert M-E, Kainiu M, Girault D, Bierque E, Fernandes J, Bähre H, Douyère A, Eskenazi N, Vinh J, Picardeau M, Goarant C (2020) The zoonotic pathogen Leptospira interrogans mitigates environmental stress through cyclic-di-GMP-controlled biofilm production. NPJ Biofilms Microbi 6:24

    Article  Google Scholar 

  37. Vinod Kumar K, Lall C, Vimal Raj R, Vedhagiri K, Vijayachari P (2015) Co-existence and survival of pathogenic leptospires by formation of biofilm with Azospirillum. FEMS Microbiol Ecol 91(6):pii:fiv051. https://doi.org/10.1093/femsec/fiv051

    Article  CAS  Google Scholar 

  38. Vinod Kumar K, Lall C, Raj RV, Vijayachari P (2019) Coaggregation and biofilm formation of Leptospira with Staphylococcus aureus. Microbiol Immunol 63(3–4):147–150. https://doi.org/10.1111/1348-0421.12679

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Sophie Geroult who worked on preliminary experiments, Malia Kainiu for her feedback on the manuscript and Mélanie Faure for her help during her internship. We are also thankful to Institut Pasteur in New Caledonia for supporting this research by an internal funding.

Author information

Authors and Affiliations

Authors

Contributions

CG and RT conceived the initial project. EB, MESG and DG planned and carried out experimentations. EB analyzed results and wrote the manuscript with support from CG and LG. CG supervised the entire project. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Cyrille Goarant.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Animal Rights

Animal experiments were validated by our institutional review board and conducted in agreement with guidelines of the Animal Care and Use Committees of the Institut Pasteur and followed European Recommendation 2007/526/EC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bierque, E., Soupé-Gilbert, ME., Thibeaux, R. et al. Leptospira interrogans Retains Direct Virulence After Long Starvation in Water. Curr Microbiol 77, 3035–3043 (2020). https://doi.org/10.1007/s00284-020-02128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02128-7

Navigation